1. |
邱卓英, 李欣, 李沁燚, 等. 中国残疾人康复需求与发展研究. 中国康复理论与实践, 2017, 23(8): 869-874.
|
2. |
Strbac M, Isakovic M, Belic M, et al. Short-and long-term learning of feedforward control of a myoelectric prosthesis with sensory feedback by amputees. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(11): 2133-2145.
|
3. |
Schweisfurth M A, Markovic M, Dosen S A, et al. Electrotactile EMG feedback improves the control of prosthesis grasping force. J Neural Eng, 2016, 13(5): 056010.
|
4. |
Schiefer M, Tan D, Sidek S M, et al. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis. J Neural Eng, 2016, 13(1): 016001.
|
5. |
de Nunzio A M, Dosen S, Lemling S, et al. Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels. Exp Brain Res, 2017, 235(8): 2547-2559.
|
6. |
D'anna E, Petrini F M, Artoni F A, et al. A somatotopic bidirectional hand prosthesis with transcutaneous electrical nerve stimulation based sensory feedback. Sci Rep, 2017, 7(1): 10930.
|
7. |
Vorobyov M. Development of power driver for vibration generator of bionic-like feedback for smart prosthesis//2016 IEEE 4th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), 2016: 1-4.
|
8. |
Svensson P, Wijk U, Bjorkman A, et al. A review of invasive and non-invasive sensory feedback in upper limb prostheses. Expert Rev Med Devices, 2017, 14(6): 439-447.
|
9. |
Stephens-Fripp B, Alici G, Mutlu R. A review of non-invasive sensory feedback methods for transradial prosthetic hands. IEEE Access, 2018, 6: 6878-6899.
|
10. |
Yin Jianzhu, Aspinall P, Santos V J, et al. Measuring dynamic shear force and vibration with a bioinspired tactile sensor skin. IEEE Sens J, 2018, 18(9): 3544-3553.
|
11. |
Stassi S, Cauda V, Canavese G, et al. Flexible tactile sensing based on piezoresistive composites: a review. Sensors, 2014, 14(3): 5296-5332.
|
12. |
Totaro M, Poliero T, Mondini A, et al. Soft smart garments for lower limb joint position analysis. Sensors, 2017, 17(10): 2314-2336.
|
13. |
Wang Yancheng, Xi Kailun, Liang Guanghao, et al. A flexible capacitive tactile sensor array for prosthetic hand Real-Time contact force measurement//2014 IEEE International Conference on Information and Automation (ICIA), Hailar, China: IEEE, 2014: 937-942.
|
14. |
Sani H N, Meek S G. Characterizing the performance of an optical slip sensor for grip control in a prosthesis//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, USA: IEEE, 2011: 1927-1932.
|
15. |
Marino A, Genchi G G, Mattoli V A. Piezoelectric nanotransducers: The future of neural stimulation. Nano Today, 2017, 14: 9-12.
|
16. |
Wang Sihong, Xu Jie, Wang Weichen, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 2018, 555(7694): 83-88.
|
17. |
Battaglia E, Clark J P, Bianchi M A, et al. The rice haptic rocker: skin stretch haptic feedback with the Pisa/IIT SoftHand//2017 IEEE World Haptics Conference (WHC), Munich, Germany: IEEE, 2017: 7-12.
|
18. |
Isaković M, Belić M, Štrbac M, et al. Electrotactile feedback improves performance and facilitates learning in the routine grasping task. Eur J Transl Myol, 2016, 26(3): 6069-6069.
|
19. |
Arakeri T J, Hasse B A, Fuglevand A J. Object discrimination using electrotactile feedback. J Neural Eng, 2018, 15(4): 046007.
|
20. |
D'alonzo M, Engels L F, Controzzi M, et al. Electro-cutaneous stimulation on the palm elicits referred sensations on intact but not on amputated digits. J Neural Eng, 2018, 15(1): 016003.
|
21. |
Štrbac M, Belić M, Isaković M, et al. Integrated and flexible multichannel interface for electrotactile stimulation. J Neural Eng, 2016, 13(4): 046014.
|
22. |
Chai Guohong, Zhang Dingguo, Zhu Xiangyang. Developing non-somatotopic phantom finger sensation to comparable levels of somatotopic sensation through user training with electrotactile stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(5): 469-480.
|
23. |
姜力, 杨斌, 黄琦, 等. 智能假肢手的生机电集成. 机器人, 2017, 39(4): 387-394.
|
24. |
Nabeel M, Aqeel K, Ashraf M N, et al. Vibrotactile stimulation for 3D printed prosthetic hand//2016 2nd International Conference on Robotics and Artificial Intelligence (ICRAI), Pakistan: IEEE, 2016: 202-207.
|
25. |
Raveh E, Friedman J, Portnoy S. Visuomotor behaviors and performance in a dual-task paradigm with and without vibrotactile feedback when using a myoelectric controlled hand. Assist Technol, 2018, 30(5): 274-280.
|
26. |
Clemente F, D'alonzo M, Controzzi M, et al. Non-invasive, temporally discrete feedback of object contact and release improves grasp control of closed-loop myoelectric transradial prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24(12): 1314-1322.
|
27. |
Markovic M, Karnal H, Graimann B, et al. GLIMPSE: google glass interface for sensory feedback in myoelectric hand prostheses. J Neural Eng, 2017, 14(3): 036007.
|
28. |
Ueda Y, Ishii C. Development of a feedback device of temperature sensation for a myoelectric prosthetic hand by using peltier element//2016 International Conference on Advanced Mechatronic Systems (ICAMechS), Australia: IEEE, 2016: 488-493.
|