1. |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424.
|
2. |
郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析. 中华肿瘤杂志, 2019, 41(1): 19-28.
|
3. |
Ganeshan B, Panayiotou E, Burnand K, et al. Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur Radiol, 2012, 22(4): 796-802.
|
4. |
刘红雨, 李颖, 陈钢, 等. 187例非小细胞肺癌中EGFR基因突变和扩增的检测及其临床意义. 中国肺癌杂志, 2009, 4(12): 1219-1228.
|
5. |
Chan B A, Hughes B G. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Translational lung cancer research, 2015, 4(1): 36-54.
|
6. |
Junttila M R, de Sauvage F J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature, 2013, 501(7467): 346-354.
|
7. |
Mobadersany P, Yousefi S, Amgad M, et al. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc Natl Acad Sci U S A, 2018, 115(13): E2970-E2979.
|
8. |
Xu Jun, Luo Xiaofei, Wang Guanhao, et al. A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images. Neurocomputing, 2016, 191(3): 214-223.
|
9. |
Yu K H, Zhang Ce, Berry G J, et al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat Commun, 2016, 7(5): 12474.
|
10. |
Vaidya P, Wang X, Bera K, et al. RaPtomics: integrating radiomic and pathomic features for predicting recurrence in early stage lung cancer. Digital Pathology, 2018, 6(2): 105-118.
|
11. |
Aerts H J, Grossmann P, Tan Yongqiang, et al. Defining a radiomic response phenotype: a pilot study using targeted therapy in NSCLC. Sci Rep, 2016, 6(2): 33860.
|
12. |
Liu Ying, Kim J, Balagurunathan Y, et al. Radiomic features are associated with EGFR mutation status in lung adenocarcinomas. Clin Lung Cancer, 2016, 17(5): 441-448.
|
13. |
Isola P, Zhu Junyan, Zhou Tinghui, et al. Image-to-image translation with conditional adversarial networks//30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), 2017: 5967-5976.
|
14. |
Khan A M, Rajpoot N, Treanor D, et al. A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans Biomed Eng, 2014, 61(6): 1729-1738.
|
15. |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation//Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer, 2015, 9351: 234-241.
|
16. |
Ali S, Lewis J, Madabhushi A. Spatially aware cell cluster graphs: predicting outcome in oropharyngeal pl6+ tumors//International Conference on Medical Image Computing and Computer-Assisted Intervention, Berlin: Springer, 2013: 412-419.
|
17. |
Haralick R M, Shanmugam K, Dinstein H. Textural features for image classification. IEEE Transactions on Systems, 1973, 3(6): 610-621.
|
18. |
Duyckaerts C, Godefroy G. Voronoi tessellation to study the numerical density and the spatial distribution of neurones. J Chem Neuroanat, 2000, 20(1): 83-92.
|
19. |
Lee G, Ali S, Veltri R, et al. Cell orientation entropy (COrE): predicting biochemical recurrence from prostate cancer tissue microarrays. Med Image Comput Comput Assist Interv, 2013, 16(3): 396-403.
|
20. |
Peng Hanchuan, Long Fuhui, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell, 2005, 27(8): 1226-1238.
|
21. |
Suykens J, Vandewalle J. Least squares support vector machine classifiers. Neural Processing Letters, 1999, 9(3): 293-300.
|
22. |
Furey T S, Cristianini N, Duffy N, et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 2000, 16(10): 906-914.
|
23. |
Tong S, Koller D. Support vector machine active learning with applications to text classification. Journal of Machine Learning Research, 2002, 15(21): 999-1006.
|
24. |
Ginsburg S B, Viswanath S E, Bloch B, et al. Novel PCA-VIP scheme for ranking MRI protocols and identifying computer-extracted MRI measurements associated with central gland and peripheral zone prostate tumors. Journal of Magnetic Resonance Imaging, 2015, 41(5): 1383-1393.
|