1. |
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput, 1997, 9(8): 1735-1780.
|
2. |
Miotto R, Wang Fei, Wang Shuang, et al. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform, 2018, 19(6): 1236-1246.
|
3. |
Lipton Z C, Kale D C, Elkan C, et al. Learning to diagnose with LSTM recurrent neural networks. arXiv: 1511.03677.
|
4. |
Che Z, Purushotham S, Khemani R, et al. Interpretable deep models for ICU outcome prediction//AMIA Annual Symposium Proceedings. Chicago: American Medical Informatics Association, 2016: 371-380.
|
5. |
Jo Y, Lee L, Palaskar S. Combining LSTM and latent topic modeling for mortality prediction. arXiv: 1709.02842.
|
6. |
Harutyunyan H, Khachatrian H, Kale D C, et al. Multitask learning and benchmarking with clinical time series data. arXiv: 1703.07771.
|
7. |
Purushotham S, Meng C, Che Zhengping, et al. Benchmark of deep learning models on large healthcare MIMIC datasets. arXiv: 1710.08531.
|
8. |
Pham T, Tran T, Phung D, et al. Deepcare: A deep dynamic memory model for predictive medicine//Bailey J, Khan L, Washio T, et al. Advances in knowledge discovery and data mining. PAKDD 2016. Cham: Springer, 2016, 9652: 30-41.
|
9. |
Baytas I M, Xiao Cao, Zhang Xi, et al. Patient subtyping via time-aware LSTM networks//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Canada: ACM, 2017: 65-74.
|
10. |
Van Steenkiste T, Ruyssinck J, De Baets L, et al. Accurate prediction of blood culture outcome in the intensive care unit using long short-term memory neural networks. Artif Intell Med, 2019, 97: 38-43.
|
11. |
Suresh H, Gong J J, Guttag J V. Learning tasks for multitask learning: Heterogenous patient populations in the ICU// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London: ACM, 2018: 802-810.
|
12. |
Reddy B K, Delen D. Predicting hospital readmission for lupus patients: An RNN-LSTM-based deep-learning methodology. Comput Biol Med, 2018, 101: 199-209.
|
13. |
Pan S J, Yang Qiang. A survey on transfer learning. IEEE Trans Knowl Data Eng, 2010, 22(10): 1345-1359.
|
14. |
Weiss K, Khoshgoftaar T M, Wang D. A survey of transfer learning. J Big Data, 2016, 3(1): 9.
|
15. |
庄福振. 迁移学习中文本分类算法研究. 北京: 中国科学院大学, 2011.
|
16. |
戴文渊. 基于实例和特征的迁移学习算法研究. 上海: 上海交通大学, 2009.
|
17. |
Shao Ling, Zhu Fan, Li Xuelong. Transfer learning for visual categorization: a survey. IEEE Trans Neural Netw Learn Syst, 2015, 26(5): 1019-1034.
|
18. |
Cheplygina V, Pena I P, Pedersen J H, et al. Transfer learning for multi-center classification of chronic obstructive pulmonary disease. IEEE J Biomed Health Inform, 2018, 22(5): 1486-1496.
|
19. |
Paul R, Hawkins S H, Balagurunathan Y, et al. Deep feature transfer learning in combination with traditional features predicts survival among patients with lung adenocarcinoma. Tomography, 2016, 2(4): 388-395.
|
20. |
Pan Weike. A survey of transfer learning for collaborative recommendation with auxiliary data. Neurocomputing, 2016, 177: 447-453.
|
21. |
Bianchi A, Raimondo Vendra M, Protopapas P, et al. Improving image classification robustness through selective CNN-filters fine-tuning. arXiv: 1904.03949.
|
22. |
Zhu Y, Zhuang F, Yang J, et al. Adaptively transfer category-classifier for handwritten chinese character recognition//Advances in Knowledge Discovery and Data Mining. Cham: Springer International Publishing, 2019: 110-122.
|
23. |
龙明盛. 迁移学习问题与方法研究. 北京: 清华大学, 2014.
|
24. |
Yosinski J, Clune J, Bengio Y, et al. How transferable are features in deep neural networks?//Ghahramani Z, Welling profile M, Cortes C, et al. Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014, 2: 3320-3328.
|
25. |
Jozefowicz R, Zaremba W, Sutskever I. An empirical exploration of recurrent network architectures. Proceedings of Machine Learning Research, 2015, 37: 2342-2350.
|
26. |
Johnson A E W, Pollard T J, Shen Lu, et al. MIMIC-Ⅲ, a freely accessible critical care database. Scientific Data, 2016, 3: 160035.
|
27. |
World Health Organization. ICD-10: International Statistical Classification of Diseases and Related Health Problems. Geneva: World Health Organization, 2004, 1.
|
28. |
Zhou Jianfang, Qian Chuanyun, Zhao Mingyan, et al. Epidemiology and outcome of severe sepsis and septic shock in intensive care units in mainland China. PLoS One, 2014, 9(9): e107181.
|
29. |
Dellinger R P, Levy M M, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med, 2013, 41(2): 580-637.
|
30. |
Cho K, Van Merrienboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv: 1406.1078.
|
31. |
Burges C C. A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov, 1998, 2(2): 121-167.
|
32. |
Lateh M A, Kamilah Muda A, Yusof Z I M, et al. Handling a small dataset problem in prediction model by employ artificial data generation approach: A review. Journal of Physics: Conference Series, 2017, 892(1): 1-10.
|
33. |
Chao G Y, Tsai T I, Lu T J, et al. A new approach to prediction of radiotherapy of bladder cancer cells in small dataset analysis. Expert Syst Appl, 2011, 38(7): 7963-7969.
|
34. |
辛宪会, 叶秋果, 滕惠忠, 等. 小样本机器学习算法的特性分析与应用. 海洋测绘, 2007, 27(3): 16-19.
|