1. |
Young M. Atrial fibrillation. Crit Care Nurs Clin N Am, 2019, 31(1): 77-90.
|
2. |
Markides V. Atrial fibrillation: classification, pathophysiology, mechanisms and drug treatment. Heart, 2003, 89(8): 939-943.
|
3. |
Camm A J, Kirchhof P, Lip G Y H, <italic>et al</italic>. Guidelines for the management of atrial fibrillation. Eur Heart J, 2010, 12(19): 2369-2429.
|
4. |
García M, Ródenas J, Alcaraz R, <italic>et al</italic>. Application of the relative wavelet energy to heart rate Independent detection of atrial fibrillation. Comput Methods Programs Biomed, 2016, 131: 157-168.
|
5. |
Du Xiaochuan, Rao N, Qian Mengyao, <italic>et al</italic>. A novel method for real-time atrial fibrillation detection in electrocardiograms using multiple parameters. Ann Noninvasive Electrocardiol, 2014, 19(3): 217-225.
|
6. |
Ródenas J, García M, Alcaraz R, <italic>et al</italic>. Wavelet entropy automatically detects episodes of atrial fibrillation from single-lead electrocardiograms. Entropy, 2015, 17(12): 6179-6199.
|
7. |
Mohebbi M, Ghassemian H. Prediction of paroxysmal atrial fibrillation based on non-linear analysis and spectrum and bispectrum features of the heart rate variability signal. Comput Methods Programs Biomed, 2012, 105(1): 40-49.
|
8. |
Tateno K, Glass L. Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and ΔRR intervals. Med Biol Eng Comput, 2001, 39(6): 664-671.
|
9. |
Li Yanjun, Tang Xiaoying, Wang Ancong, <italic>et al</italic>. Probability density distribution of delta RR intervals: a novel method for the detection of atrial fibrillation. Australas Phys Eng Sci Med, 2017, 40(3): 707-716.
|
10. |
Kennedy A, Finlay D D, Guldenring D, <italic>et al</italic>. Automated detection of atrial fibrillation using R-R intervals and multivariate-based classification. J Electrocardiol, 2016, 49(6): 871-876.
|
11. |
Petrėnas A, Sörnmo L, Lukoševičius A, <italic>et al</italic>. Detection of occult paroxysmal atrial fibrillation. Med Biol Eng Comput, 2015, 53(4): 287-297.
|
12. |
Shashikumar S P, Shah A J, Clifford G D, et al. Detection of paroxysmal atrial fibrillation using attention-based bidirectional recurrent neural networks// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London: SIGMOD, SIGKDD, 2018: 715-723.
|
13. |
Cui X, Chang E, Yang W H, <italic>et al</italic>. Automated detection of paroxysmal atrial fibrillation using an information-based similarity approach. Entropy, 2017, 19(12): 677.
|
14. |
Devanne M, Wannous H, Berretti S, <italic>et al</italic>. 3-D human action recognition by shape analysis of motion trajectories on Riemannian manifold. IEEE Trans Cybern, 2015, 45(7): 1340-1352.
|
15. |
de Souza M. On a class of nonhomogeneous elliptic equation on compact Riemannian manifold without boundary. Mediterranean Journal of Mathematics, 2018, 15(3): 101.
|
16. |
Fletcher P T, Joshi S. Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Processing, 2007, 87(2): 250-262.
|
17. |
Pennec X, Fillard P, Ayache N. A Riemannian framework for tensor computing. Int J Comput Vis, 2006, 66(1): 41-66.
|
18. |
Cherian A, Sra S. Riemannian dictionary learning and sparse coding for positive definite matrices. IEEE Trans Neural Netw Learn Syst, 2017, 28(12): 2859-2871.
|
19. |
Harandi M T, Hartley R, Lovell B, <italic>et al</italic>. Sparse coding on symmetric positive definite manifolds using Bregman divergences. IEEE Trans Neural Netw Learn Syst, 2016, 27(6): 1294-1306.
|
20. |
Absil P A, Mahony R, Sepulchre R. Optimization algorithms on matrix manifold. New Jersey: Princeton University Press, 2008: 54-90.
|
21. |
Goldberger A L, Amaral L N, Glass L, <italic>et al</italic>. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation, 2000, 101(23): e215-e220.
|
22. |
Andersen R S, Peimankar A, Puthusserypady S. A deep learning approach for real-time detection of atrial fibrillation. Expert Syst Appl, 2019, 115: 465-473.
|
23. |
Sepulveda-Suescun J P, Murillo-Escobar J, Urda-Benitez R D, <italic>et al</italic>. Atrial fibrillation detection through heart rate variability using a machine learning approach and Poincare plot features//VⅡ Latin American Congress on Biomedical Engineering CLAIB 2016. Bucaramanga: IFMBE, 2016: 565-568.
|
24. |
Zhou Xiaolin, Ding Hongxia, Ung B, <italic>et al</italic>. Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy. Biomed Eng Online, 2014, 13(1): 18.
|
25. |
Lian Jie, Wang Lian, Muessig D. A simple method to detect atrial fibrillation using RR intervals. Am J Cardiol, 2011, 107(10): 1494-1497.
|