1. |
Alfaras M, Soriano M C, Ortín S. A fast machine learning model for ECG-based heartbeat classification and arrhythmia detection. Frontiers in Physics, 2019, 7: 103.
|
2. |
Zihlmann M, Perekrestenko D, Tschannen M. Convolutional recurrent neural networks for electrocardiogram classification//2017 Computing in Cardiology Conference (CinC), Rennes: IEEE, 2017: 1-4.
|
3. |
马金伟, 刘盛平. 心电信号识别分类算法综述. 重庆理工大学学报: 自然科学版, 2018, 32(12): 122-128.
|
4. |
赖杰伟, 陈韵岱, 韩宝石, 等. 基于 DenseNet 的心电数据自动诊断算法. 南方医科大学学报, 2019, 39(1): 69-75.
|
5. |
Kumar M, Pachori R B, Acharya U R. Automated diagnosis of atrial fibrillation ECG signals using entropy features extracted from flexible analytic wavelet transform. Biocybern Biomed Eng, 2018, 38(3): 564-573.
|
6. |
Piccini J P, Fauchier L. Rhythm control in atrial fibrillation. Lancet, 2016, 388(146): 829-840.
|
7. |
Bonomi A G, Schipper F, Eerikäinen L M, <italic>et al</italic>. Atrial fibrillation detection using a novel cardiac ambulatory monitor based on photo-plethysmography at the wrist. J Am Heart Assoc, 2018, 7(15): e009351.
|
8. |
Bizopoulos P, Koutsouris D. Deep learning in cardiology. IEEE Rev Biomed Eng, 2019, 12: 168-193.
|
9. |
de Fauwj, Ledsam J R, Romera-Paredes B, <italic>et al</italic>. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med, 2018, 24(9): 1342-1350.
|
10. |
Krittanawong C. The rise of artificial intelligence and the uncertain future for physicians. Eur J Intern Med, 2018, 48: e13-e14.
|
11. |
Kiranyaz S, Ince T, Gabbouj M. Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans Biomed Eng, 2016, 63(3): 664-675.
|
12. |
Hannun A Y, Rajpurkar P, Haghpanahi M, <italic>et al</italic>. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med, 2019, 25(1): 65-69.
|
13. |
Zhang Qingxue, Zhou Dian, Zeng Xuan. PulsePrint: single-arm-ECG biometric human identification using deep learning//2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), New York: IEEE, 2017: 452-456.
|
14. |
Liu Wenhan, Zhang Mengxin, Zhang Yidan, <italic>et al</italic>. Real-time multilead convolutional neural network for myocardial infarction detection. IEEE J Biomed Health Inform, 2018, 22(5): 1434-1444.
|
15. |
Wu M H, Chang E J, Chu T H. Personalizing a generic ECG heartbeat classification for arrhythmia detection: a deep learning approach//2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), Miami: IEEE, 2018: 92-99.
|
16. |
Wu M H, Chang E Y. Deepq arrhythmia database: a large-scale dataset for arrhythmia detector evaluation// Proceedings of the 2nd International Workshop on Multimedia for Personal Health and Health Care, California: ACM, 2017: 77-80.
|
17. |
Al Rahhal M M, Bazi Y, AlHichri H, <italic>et al</italic>. Deep learning approach for active classification of electrocardiogram signals. Information sciences, 2016, 345: 340-354.
|
18. |
Acharya U R, Fujita H, Lih O S, <italic>et al</italic>. Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Information sciences, 2017, 405: 81-90.
|
19. |
Luo Kan, Li Jianqing, Wang Zhigang, <italic>et al</italic>. Patient-specific deep architectural model for ECG classification. J Healthc Eng, 2017, 2017: 4108720.
|
20. |
Xia Y, Wulan N, Wang Kuanquan, <italic>et al</italic>. Detecting atrial fibrillation by deep convolutional neural networks. Comput Biol Med, 2018, 93: 84-92.
|
21. |
Isin A, Ozdalili S. Cardiac arrhythmia detection using deep learning. Procedia Comput Sci, 2017, 120: 268-275.
|
22. |
Xiao R, Xu Yuan, Pelter M M, <italic>et al</italic>. Monitoring significant ST changes through deep learning. J Electrocardiol, 2018, 51(6S): S78-S82.
|
23. |
Liu Yixiu, Huang Yujuan, Wang Jianyi, <italic>et al</italic>. Detecting premature ventricular contraction in children with deep learning. J Shanghai Jiaotong Univ: Science, 2018, 23(1): 66-73.
|
24. |
王媛媛, 周涛, 陆惠玲, 等. 基于集成卷积神经网络的肺部肿瘤计算机辅助诊断模型. 生物医学工程学杂志, 2017, 34(4): 543-551.
|
25. |
李端, 张洪欣, 刘知青, 等. 基于深度残差卷积神经网络的心电信号心律不齐识别. 生物医学工程学杂志, 2019, 36(2): 189-198.
|
26. |
Clifford G, Liu Chengyu, Moody B, et al. AF classification from a short single lead ECG recording: the PhysioNet / Computing in cardiology challenge 2017//2017 Computing in Cardiology Conference (CinC), Rennes: IEEE, 2017: 1-4.
|
27. |
Berkaya S K, Uysal A K, Gunal E S, <italic>et al</italic>. A survey on ECG analysis. Biomedical Signal Processing and Control, 2018, 43: 216-235.
|