1. |
Ulate-Campos A, Coughlin F, Gaínza-Lein M, <italic>et al</italic>. Automated seizure detection systems and their effectiveness for each type of seizure. Seizure, 2016, 40: 88-101.
|
2. |
Engineer C T, Hays S A, Kilgard M P. Vagus nerve stimulation as a potential adjuvant to behavioral therapy for autism and other neurodevelopmental disorders. J Neurodev Disord, 2017, 9(1): 20.
|
3. |
Hoppe C, Poepel A, Elger C E. Epilepsy: accuracy of patient seizure counts. Arch Neurol, 2007, 64(11): 1595-1599.
|
4. |
Akman C I, Montenegro M A, Jacob S, <italic>et al</italic>. Seizure frequency in children with epilepsy: Factors influencing accuracy and parental awareness. Seizure, 2009, 18(7): 524-529.
|
5. |
任国平, 王群. 癫痫的电生理机制研究进展//第六届CAAE脑电图与神经电生理大会会刊. 中国抗癫痫协会脑电图与神经电生理分会, 2018: 58.
|
6. |
Aminoff M J. Electrodiagnosis in clinical neurology. 4th ed. New York: Churchill Livingstone, 1999.
|
7. |
Nuwer M. Assessment of digital EEG, quantitative EEG, and EEG brain mapping: Report of the American Academy of Neurology and the American Clinical Neurophysiology Society. Neurology, 1997, 49(1): 277-292.
|
8. |
刘晓燕. 临床脑电图学. 第2版. 北京: 人民卫生出版社, 2017.
|
9. |
Janszky J, Hoppe M, Behne F, <italic>et al</italic>. Vagus nerve stimulation: Predictors of seizure freedom. J Neurol Neurosurg Psychiatry, 2005, 76(3): 384-389.
|
10. |
Majoie H M, Berfelo M W, Aldenkamp A P, <italic>et al</italic>. Vagus nerve stimulation in patients with catastrophic childhood epilepsy, a 2-year follow-up study. Seizure, 2005, 14(1): 10-18.
|
11. |
Kim M, Yum M, Kim E, <italic>et al</italic>. An interictal EEG can predict the outcome of vagus nerve stimulation therapy for children with intractable epilepsy. Child's Nervous System, 2017, 33(1): 145-151.
|
12. |
de Vos C C, Melching L, van Schoonhoven J, <italic>et al</italic>. Predicting success of vagus nerve stimulation (VNS) from interictal EEG. Seizure, 2011, 20(7): 541-545.
|
13. |
Hilderink J, Tjepkema-Cloostermans M C, Geertsema A, <italic>et al</italic>. Predicting success of vagus nerve stimulation (VNS) from EEG symmetry. Seizure, 2017, 48: 69-73.
|
14. |
Bayasgalan B, Matsuhashi M, Fumuro T, <italic>et al</italic>. We could predict good responders to vagus nerve stimulation: A surrogate marker by slow cortical potential shift. Clin Neurophysiol, 2017, 128(9): 1583-1589.
|
15. |
Ravan M, Sabesan S, D'Cruz O. On quantitative biomarkers of VNS therapy using EEG and ECG signals. IEEE Trans Biomed Eng, 2017, 64(2): 419-428.
|
16. |
Brázdil M, Doležalová I, Koritáková E, <italic>et al</italic>. EEG reactivity predicts individual efficacy of vagal nerve stimulation in intractable epileptics. Front Neurol, 2019, 10: 392.
|
17. |
Li H, Zhiguo Z. EEG signal processing and feature extraction. Singapore: Springer, 2019.
|
18. |
Andersen P, Andersson S A, Lomo T. Thalamo-cortical relations during spontaneous barbiturate spindles. Electroencephalogr Clin Neurophysiol, 1968, 24(1): 90.
|
19. |
Timofeev I, Steriade M. Fast (mainly 30-100 Hz) oscillations in the cat cerebellothalamic pathway and their synchronization with cortical potentials. J Physiol, 1997, 504(Pt 1): 153-168.
|
20. |
Gaal Z A, Boha R, Stam C J, <italic>et al</italic>. Age-dependent features of EEG-reactivity—Spectral, complexity, and network characteristics. Neurosci Lett, 2010, 479(1): 79-84.
|
21. |
Bartolomei F, Bonini F, Vidal E, <italic>et al</italic>. How does vagal nerve stimulation (VNS) change EEG brain functional connectivity? Epilepsy Res, 2016, 126: 141-146.
|
22. |
Ilyas A, Toth E, Pizarro D, <italic>et al</italic>. Modulation of neural oscillations by vagus nerve stimulation in posttraumatic multifocal epilepsy: case report. J Neurosurg, 2019, 131(4): 1079-1085.
|
23. |
Marrosu F, Santoni F, Puligheddu M, <italic>et al</italic>. Increase in 20-50 Hz (gamma frequencies) power spectrum and synchronization after chronic vagal nerve stimulation. Clin Neurophysiol, 2005, 116(9): 2026-2036.
|
24. |
De Herdt V, De Waele J, Raedt R, <italic>et al</italic>. Modulation of seizure threshold by vagus nerve stimulation in an animal model for motor seizures. Acta Neurol Scand, 2010, 121(4): 271-276.
|
25. |
Ikeda A, Terada K, Mikuni N, <italic>et al</italic>. Subdural recording of ictal DC shifts in neocortical seizures in humans. Epilepsia, 1996, 37(7): 662-674.
|
26. |
Ayala G F, Dichter M, Gumnit R J, <italic>et al</italic>. Genesis of epileptic interictal spikes. New knowledge of cortical feedback systems suggests a neurophysiological explanation of brief paroxysms. Brain Res, 1973, 52: 1-17.
|
27. |
Zagon A, Kemeny A A. Slow hyperpolarization in cortical neurons: a possible mechanism behind vagus nerve simulation therapy for refractory epilepsy? Epilepsia, 2000, 41(11): 1382-1389.
|
28. |
姜涛, 吴效明, 叶丙刚. 基于皮质慢电位特征分析的神经皮质运动区功能定位. 中国组织工程研究与临床康复, 2010, 14(26): 4801-4804.
|
29. |
van Putten M J. The revised brain symmetry index. Clin Neurophysiol, 2007, 118(11): 2362-2367.
|
30. |
Hammond E J, Uthman B M, Reid S A, <italic>et al</italic>. Vagus nerve stimulation in humans: neurophysiological studies and electrophysiological monitoring. Epilepsia, 1990, 31(Suppl 2): S51-S59.
|
31. |
Hammond E J, Uthman B M, Reid S A, <italic>et al</italic>. Electrophysiological studies of cervical vagus nerve stimulation in humans: I. EEG effects. Epilepsia, 1992, 33(6): 1013-1020.
|
32. |
Koo B. EEG changes with vagus nerve stimulation. J Clin Neurophysiol, 2001, 18(5): 434-441.
|
33. |
Kuba R, Guzaninová M, Brázdil M, <italic>et al</italic>. Effect of vagal nerve stimulation on interictal epileptiform discharges: a scalp EEG study. Epilepsia, 2002, 43(10): 1181-1188.
|
34. |
Ebus S C, Majoie H J, Arends J B, <italic>et al</italic>. Can spikes predict seizure frequency? Results of a pilot study in severe childhood epilepsies treated with vagus nerve stimulation. Seizure, 2004, 13(7): 494-498.
|
35. |
Hallbook T, Lundgren J, Blennow G, <italic>et al</italic>. Long term effects on epileptiform activity with vagus nerve stimulation in children. Seizure, 2005, 14(8): 527-533.
|
36. |
Santiago-Rodríguez E, Alonso-Vanegas M, Cárdenas-Morales L, <italic>et al</italic>. Effects of two different cycles of vagus nerve stimulation on interictal epileptiform discharges. Seizure, 2006, 15(8): 615-620.
|
37. |
Wang Haiyang, Chen Xiaoguang, Lin Zhiguo, <italic>et al</italic>. Long-term effect of vagus nerve stimulation on interictal epileptiform discharges in refractory epilepsy. J Neurol Sci, 2009, 284(1/2): 96-102.
|
38. |
Kuba R, Nesvadba D, Brázdil M, <italic>et al</italic>. Effect of chronic vagal nerve stimulation on interictal epileptiform discharges. Seizure, 2010, 19(6): 352-355.
|
39. |
林志国, 王海洋, 孙伯民, 等. 迷走神经刺激治疗顽固性癫痫脑电变化的初步研究//2011中华医学会神经外科学学术会议论文汇编. 中华医学会、中华医学会神经外科学分会, 2011: 2162.
|
40. |
Ravan M, Begnaud J. Investigating the effect of short term responsive VNS therapy on sleep quality using automatic sleep staging. IEEE Trans Biomed Eng, 2019, 66(12): 3301-3309.
|
41. |
Salinsky M C, Burchiel K J. Vagus nerve stimulation has no effect on awake EEG rhythms in humans. Epilepsia, 1993, 34(2): 299-304.
|
42. |
Bewernitz M, Ghacibeh G, Seref O, et al. Quantification of the impact of vagus nerve stimulation parameters on electroencephalographic measures//Seref O, Kundakcioglu O E, Pardalos P M. AIP Conference Proceedings, 2007: 206.
|
43. |
Fraschini M, Puligheddu M, Demuru M, <italic>et al</italic>. VNS induced desynchronization in gamma bands correlates with positive clinical outcome in temporal lobe pharmacoresistant epilepsy. Neurosci Lett, 2013, 536: 14-18.
|
44. |
Bodin C, Aubert S, Daquin G, <italic>et al</italic>. Responders to vagus nerve stimulation (VNS) in refractory epilepsy have reduced interictal cortical synchronicity on scalp EEG. Epilepsy Res, 2015, 113: 98-103.
|
45. |
Ravan M. Investigating the correlation between short-term effectiveness of VNS Therapy in reducing the severity of seizures and long-term responsiveness. Epilepsy Res, 2017, 133: 46-53.
|
46. |
De Taeye L, Vonck K, van Bochove M, <italic>et al</italic>. The P3 event-related potential is a biomarker for the efficacy of vagus nerve stimulation in patients with epilepsy. Neurotherapeutics, 2014, 11(3): 612-622.
|
47. |
Wostyn S, Staljanssens W, De Taeye L, <italic>et al</italic>. EEG derived brain activity reflects treatment response from vagus nerve stimulation in patients with epilepsy. Int J Neural Syst, 2017, 27(4): 1650048.
|
48. |
Fraschini M, Demuru M, Puligheddu M, <italic>et al</italic>. The re-organization of functional brain networks in pharmaco-resistant epileptic patients who respond to VNS. Neurosci Lett, 2014, 580: 153-157.
|
49. |
Uchida T, Fujiwara K, Inoue T, <italic>et al</italic>. Analysis of VNS effect on EEG connectivity with Granger causality and graph theory//Asia-Pacific Signal & Information Processing Association Summit & Conference. Hawaii: APSIPA, 2018: 861-864.
|
50. |
Wang Z, Kim E, Noh B H, <italic>et al</italic>. Alteration in brain connectivity in patients with Dravet syndrome after vagus nerve stimulation (VNS): Exploration of its effectiveness using graph theory analysis with electroencephalography. J Neural Eng, 2020, 17(3): 036014.
|
51. |
Pillai J, Sperling M R. Interictal EEG and the diagnosis of epilepsy. Epilepsia, 2006, 47: 14-22.
|
52. |
Whitham E M, Pope K J, Fitzgibbon S P, <italic>et al</italic>. Scalp electrical recording during paralysis: quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG. Clin Neurophysiol, 2007, 118(8): 1877-1888.
|
53. |
Iasemidis L D, Sackellares J C, Zaveri H P, <italic>et al</italic>. Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures. Brain Topogr, 1990, 2(3): 187-201.
|
54. |
Aarabi A, He B. A rule-based seizure prediction method for focal neocortical epilepsy. Clin Neurophysiol, 2012, 123(6): 1111-1122.
|
55. |
Jaseja H. EEG-desynchronization as the major mechanism of anti-epileptic action of vagal nerve stimulation in patients with intractable seizures: Clinical neurophysiological evidence. Med Hypotheses, 2010, 74(5): 855-856.
|
56. |
韦晓燕, 周霖, 周毅. 面向癫痫预测及定位的脑网络功能连通性分析. 中国数字医学, 2018, 13(4): 30-33.
|
57. |
Pedersen M, Omidvarnia A H, Walz J M, <italic>et al</italic>. Increased segregation of brain networks in focal epilepsy: An fMRI graph theory finding. Neuroimage Clin, 2015, 8: 536-542.
|
58. |
Sowndhararajan K, Kim M, Deepa P, <italic>et al</italic>. Application of the P300 event-related potential in the diagnosis of epilepsy disorder: a review. Sci Pharm, 2018, 86(2): 10.
|
59. |
Fornai F, Ruffoli R, Giorgi F S, <italic>et al</italic>. The role of locus coeruleus in the antiepileptic activity induced by vagus nerve stimulation. Eur J Neurosci, 2011, 33(12): 2169-2178.
|
60. |
Raedt R, Clinckers R, Mollet L, <italic>et al</italic>. Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model. J Neurochem, 2011, 117(3): 461-469.
|
61. |
Nieuwenhuis S, Aston-Jones G, Cohen J D. Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychol Bull, 2005, 131(4): 510-532.
|
62. |
Murphy P R, Robertson I H, Balsters J H, <italic>et al</italic>. Pupillometry and P3 index the locus coeruleus-noradrenergic arousal function in humans. Psychophysiology, 2011, 48(11): 1532-1543.
|
63. |
Fang Jiliang, Rong Peijing, Yang Hong, <italic>et al</italic>. Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder. Biol Psychiatry, 2016, 79(4): 266-273.
|
64. |
Karoly P J, Goldenholz D M, Freestone D R, <italic>et al</italic>. Circadian and circaseptan rhythms in human epilepsy: a retrospective cohort study. Lancet Neurol, 2018, 17(11): 977-985.
|
65. |
Wang H, Tan G, Zhu L, <italic>et al</italic>. Predictors of seizure reduction outcome after vagus nerve stimulation in drug-resistant epilepsy. Seizure, 2019, 66: 53-60.
|
66. |
Mithani K, Mikhail M, Morgan B R, <italic>et al</italic>. Connectomic profiling identifies responders to vagus nerve stimulation. Ann Neurol, 2019, 86(5): 743-753.
|
67. |
Colicchio G, Montano N, Fuggetta F, <italic>et al</italic>. Vagus nerve stimulation in drug-resistant epilepsies. Analysis of potential prognostic factors in a cohort of patients with long-term follow-up. Acta Neurochirurgica, 2012, 154(12): 2237-2240.
|
68. |
Liu Hongyun, Zhao Yang, Meng Fangang, <italic>et al</italic>. Preoperative heart rate variability as predictors of vagus nerve stimulation outcome in patients with drug-resistant epilepsy. Sci Rep, 2018, 8(1): 3856.
|
69. |
雷旭, 尧德中. 同步脑电-功能磁共振(EEG-fMRI)原理与技术. 北京: 科学出版社, 2014.
|
70. |
Markoula S, Chaudhary U J, Perani S, <italic>et al</italic>. The impact of mapping interictal discharges using EEG-fMRI on the epilepsy presurgical clinical decision making process: A prospective study. Seizure, 2018, 61: 30-37.
|
71. |
Pernet C R, Garrido M, Gramfort A, et al. Best practices in data analysis and sharing in neuroimaging using MEEG[EB/OL]. OSF (2019-08-09)[2019-09-02]. https://osf.io/jh7mp/.
|