1. |
Kapoor I, Prabhakar H, Mahajan C. Postoperative cognitive dysfunction. Indian J Crit Care Med, 2019, 23(Suppl 2): S162‐S164.
|
2. |
申远, 谢仲淙. 术后神经认知功能障碍. 北京医学, 2018, 40(6): 501-503.
|
3. |
Li Nana, Xiang Zhang, Dong Hongquan, et al. Bidirectional relationship of mast cells-neurovascular unit communication in neuroinflammation and its involvement in POCD. Behav Brain Res, 2017, 322(Pt A): 60-69.
|
4. |
李秀丽, 朱志华, 杨哲, 等. 术后认知功能障碍的炎症病因学研究进展. 中国实验诊断学, 2019, 23(10): 1841-1844.
|
5. |
Tang Yu, Le Weidong. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol, 2016, 53(2): 1181-1194.
|
6. |
曹飞, 王琴琴. 小胶质细胞介导的神经炎症在帕金森病发生发展中的作用. 济宁医学院学报, 2019, 42(4): 289-293, 297.
|
7. |
Ma Gang, Chen Chan, Jiang Haixia, et al. Ribonuclease attenuates hepatic ischemia reperfusion induced cognitive impairment through the inhibition of inflammatory cytokines in aged mice. Biomed Pharmacother, 2017, 90: 62-68.
|
8. |
Wang Tianhai, Zhu Hongge, Hou Yanshen, et al. Galantamine reversed early postoperative cognitive deficit via alleviating inflammation and enhancing synaptic transmission in mouse hippocampus. Eur J Pharmacol, 2019, 846: 63-72.
|
9. |
Li Zhe, Liu Fang, Ma Hong, et al. Age exacerbates surgery-induced cognitive impairment and neuroinflammation in Sprague-Dawley rats: the role of IL-4. Brain Res, 2017, 1665: 65-73.
|
10. |
Cai Zhiyou, Zhao Bin, Deng Yanqing, et al. Notch signaling in cerebrovascular diseases (Review). Mol Med Rep, 2016, 14(4): 2883–2898.
|
11. |
Li H, Ma J, Fang Q, et al. Botch protects neurons from ischemic insult by antagonizing Notch-mediated neuroinflammation. Exp Neurol, 2019, 321: 113028.
|
12. |
Wu Lei, Li Yushuang, Yu Minhua, et al. Notch signaling regulates microglial activation and inflammatory reactions in a rat model of temporal lobe epilepsy. Neurochem Res, 2018, 43(6): 1269-1282.
|
13. |
Xu Weilin, Mo Jun, Ocak U, et al. Activation of melanocortin 1 receptor attenuates early brain injury in a rat model of subarachnoid hemorrhage viathe suppression of neuroinflammation through AMPK/TBK1/NF-κB pathway in rats. Neurotherapeutics, 2020, 17(1): 294-308.
|
14. |
Wang Limei, Wang Yongjiu, Cui Min, et al. A dietary polyphenol resveratrol acts to provide neuroprotection in recurrent stroke models by regulating AMPK and SIRT1 signaling, thereby reducing energy requirements during ischemia. Eur J Neurosci, 2013, 37(10): 1669-1681.
|
15. |
Qi Guoyuan, Mi Yashi, Fan Rong, et al. Nobiletin protects against systemic inflammation-stimulated memory impairment via MAPK and NF-κB signaling pathways. J Agric Food Chem, 2019, 67(18): 5122-5134.
|
16. |
Sn S, Pandurangi J, Murumalla R, et al. Small molecule modulator of aggrephagy regulates neuroinflammation to curb pathogenesis of neurodegeneration. EBioMedicine, 2019, 50: 260‐273.
|
17. |
Yamanaka D, Kawano T, Nishigaki A, et al. Preventive effects of dexmedetomidine on the development of cognitive dysfunction following systemic inflammation in aged rats. J Anesth, 2017, 31(1): 25-35.
|
18. |
Cibelli M, Fidalgo A R, Terrando N, et al. Role of interleukin-1β in postoperative cognitive dysfunction. Ann Neurol, 2010, 68(3): 360–368.
|
19. |
Terrando N, Monaco C, Ma Daqing, et al. Tumor necrosis factor-α triggers a cytokine cascade yielding postoperative cognitive decline. Proc Natl Acad Sci U S A, 2010, 107(47): 20518-20522.
|
20. |
Feng Xiaomei, Valdearcos M, Uchida Y, et al. Microglia mediate postoperative hippocampal inflammation and cognitive decline in mice. JCI Insight, 2017, 2(7): e91229.
|
21. |
Madry C, Kyrargyri V, Arancibia-Cárcamo I L, et al. Microglial ramification, surveillance, and interleukin-1β release are regulated by the two-pore domain K+ channel THIK-1. Neuron, 2018, 97(2): 299-312.
|
22. |
Liu Y U, YING Yanlu, LI Yujiao, et al. Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling. Nat Neurosci, 2019, 22(11): 1771-1781.
|
23. |
Hovens I B, van Leeuwen B L, Nyakas C, et al. Postoperative cognitive dysfunction and microglial activation in associated brain regions in old rats. Neurobiol Learn Mem, 2015, 118(期缺失): 74-79.
|
24. |
Zhou Bin, Zuo Yunxia, Jiang Ruotian. Astrocyte morphology: Diversity, plasticity, and role in neurological diseases. CNS Neurosci Ther, 2019, 25(6): 665-673.
|
25. |
Verkhratsky A, Nedergaard M. Physiology of astroglia. Physiol Rev, 2018, 98(1): 239-389.
|
26. |
Verkhratsky A, Nedergaard M. The homeostatic astroglia emerges from evolutionary specialization of neural cells. Philos Trans R Soc Lond B Biol Sci, 2016, 371(1700): 20150428.
|
27. |
Liddelow S A, Guttenplan K A, Clarke L E, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541(7638): 481‐487.
|
28. |
Liu Peirong, Cao Feng, Zhang Yu, et al. Electroacupuncture reduces astrocyte number and oxidative stress in aged rats with surgery-induced cognitive dysfunction. J Int Med Res, 2019, 47(8): 3860-3873.
|
29. |
Zhang Guanglin, Deng Jianping, Wang Benhan, et al. Gypenosides improve cognitive impairment induced by chronic cerebral hypoperfusion in rats by suppressing oxidative stress and astrocytic activation. Behav Pharmacol, 2011, 22(7): 633-644.
|
30. |
Tian Ayong, Ma Hong, Zhang Rongwei, et al. Interleukin17A promotes postoperative cognitive dysfunction by triggering β-amyloid accumulation via the transforming growth factor-β (TGFβ)/Smad signaling pathway. PLoS One, 2015, 10(10): e0141596.
|
31. |
Zhou Bin, Chen Lingmin, Liao Ping, et al. Astroglial dysfunctions drive aberrant synaptogenesis and social behavioral deficits in mice with neonatal exposure to lengthy general anesthesia. PLoS Biol, 2019, 17(8): e3000086.
|
32. |
Monje M. Myelin plasticity and nervous system function. Annu Rev Neurosci, 2018, 41(1): 61-76.
|
33. |
Su Weiping, Matsumoto S, Banine F, et al. A modified flavonoid accelerates oligodendrocyte maturation and functional remyelination. Glia, 2020, 68(2): 263-279.
|
34. |
Ahn S M, Kim Y R, Kim H N, et al. Electroacupuncture ameliorates memory impairments by enhancing oligodendrocyte regeneration in a mouse model of prolonged cerebral hypoperfusion. Sci Rep, 2016, 6: 28646.
|
35. |
Fan L, Wang T L, Xu Y C, et al. Minocycline may be useful to prevent/treat postoperative cognitive decline in elderly patients. Med Hypotheses, 2011, 76(5): 733-736.
|
36. |
Jin Wenjie, Feng Shanwu, Feng Zhou, et al. Minocycline improves postoperative cognitive impairment in aged mice by inhibiting astrocytic activation. Neuroreport, 2014, 25(1): 1‐6.
|
37. |
Tian Yue, Guo Shanbin, Wu Xiuying, et al. Minocycline alleviates sevoflurane-induced cognitive impairment in aged rats. Cell Mol Neurobiol, 2015, 35(4): 585-594.
|
38. |
Haile M, Boutajangout A, Chung K, et al. The Cox-2 inhibitor meloxicam ameliorates neuroinflammation and depressive behavior in adult mice after splenectomy. J Neurophysiol Neurol Disord, 2016, 3: 101.
|
39. |
Zhu Y J, Peng K, Meng X W, et al. Attenuation of neuroinflammation by dexmedetomidine is associated with activation of a cholinergic anti-inflammatory pathway in a rat tibial fracture model. Brain Res, 2016, 1644: 1‐8.
|
40. |
Deng F, Cai L, Zhou B, et al. Whole transcriptome sequencing reveals dexmedetomidine-improves postoperative cognitive dysfunction in rats via modulating lncRNA. 3 Biotech, 2020, 10(5): 202.
|
41. |
Sheets M F, Hanck D A. Molecular action of lidocaine on the voltage sensors of sodium channels. J Gen Physiol, 2003, 121: 163–175.
|
42. |
Yuan T, Li Z, Li X, et al. Lidocaine attenuates lipopolysaccharide-induced inflammatory responses in microglia. J Surg Res, 2014, 192(1): 150‐162.
|
43. |
Bell J D. In vogue: Ketamine for neuroprotection in acute neurologic injury. Anesth Analg, 2017, 124(4): 1237‐1243.
|
44. |
Cata J P, Abdelmalak B, Farag E. Neurological biomarkers in the perioperative period. Br J Anaesth, 2011, 107(6): 844-858.
|
45. |
GENG Yingjie, WU Qinghua, ZHANG Ruiqin. Effect of propofol, sevoflurane, and isoflurane on postoperative cognitive dysfunction following laparoscopic cholecystectomy in elderly patients: A randomized controlled trial. J Clin Anesth, 2017, 38: 165-171.
|
46. |
Li Hui, Yang Xue, Shi Wei, et al. Protective effects of nimodipine on cerebrovascular function in chronic alcoholic encephalopathy. Int J Mol Med, 2014, 33(1): 201-208.
|
47. |
Li Y N, Zhang Q, Yin C P, et al. Effects of nimodipine on postoperative delirium in elderly under general anesthesia: A prospective, randomized, controlled clinical trial. Medicine, 2017, 96(19): e6849.
|