1. |
Kundu S, Jin Ming, Pierce J, et al. Estimating dynamic brain functional networks using multi-subject fMRI data. Neuroimage, 2018, 183: 635-649.
|
2. |
Poulakis K, Pereira J B, Mecocci P, et al. Heterogeneous patterns of brain atrophy in Alzheimer's disease. Neurobiol Aging, 2018, 65: 98-108.
|
3. |
Li Y, Yang H, Lei B, et al. Novel effective connectivity inference using ultra-group constrained orthogonal forward regression and elastic multilayer perceptron classifier for MCI identification. IEEE Trans Med Imaging, 2019, 38(5): 1227-1239.
|
4. |
Sato J R, Calebe V M, de Siqueira S S, et al. Complex network measures in autism spectrum disorders. IEEE/ACM Trans Comput Biol Bioinform, 2018, 15(2): 581-587.
|
5. |
Liao X, Vasilakos A V, He Yong. Small-world human brain networks: perspectives and challenges. Neurosci Biobehav Rev, 2017, 77: 286-300.
|
6. |
Smyser C D, Neil J J. Use of resting-state functional MRI to study brain development and injury in neonates. Semin Perinatol, 2015, 39(2): 130-140.
|
7. |
Li H, Zhou H, Yang Yang, et al. More randomized and resilient in the topological properties of functional brain networks in patients with major depressive disorder. J Clin Neurosci, 2017, 44: 274-278.
|
8. |
Zhang F, Qiu L, Yuan Lili, et al. Evidence for progressive brain abnormalities in early schizophrenia: a cross-sectional structural and functional connectivity study. Schizophr Res, 2014, 159(1): 31-35.
|
9. |
Hillary F G, Grafman J H. Injured brains and adaptive networks: the benefits and costs of hyperconnectivity. Trends Cogn Sci, 2017, 21(5): 385-401.
|
10. |
Gross S, Vionnet L, Kasper L, et al. Physiology recording with magnetic field probes for fMRI denoising. Neuroimage, 2017, 154: 106-114.
|
11. |
Kundu P, Voon V, Balchandani P, et al. Multi-echo fMRI: a review of applications in fMRI denoising and analysis of BOLD signals. Neuroimage, 2017, 154: 59-80.
|
12. |
Bhadra A, Datta J, Polson N G, et al. Lasso meets horseshoe: a survey. Stat Sci, 2019, 34(3): 405-427.
|
13. |
Daubechies I, Defrise M, Mol C D. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun Pure Appl Math, 2004, 57(11): 1413-1457.
|
14. |
Teng Yueyang, Qing Guo, Wang Ge. Smoothing L0- and L1-Norm regularizers and their relations to non-local means for CT reconstruction//Developments in X-Ray Tomography XII, San Diego: SPIE, 2019: 11113.
|
15. |
Yao Z, Zou Ying, Zheng W, et al. Structural alterations of the brain preceded functional alterations in major depressive disorder patients: evidence from multimodal connectivity. J Affect Disord, 2019, 253: 107-117.
|
16. |
Lee H, Lee D S, Kang H, et al. Sparse brain network recovery under compressed sensing. IEEE Trans Med Imaging, 2011, 30(5): 1154-1165.
|
17. |
Lee J D, Sun D L, Sun Y, et al. Exact post-selection inference, with application to the lasso. Ann Stat, 2016, 44(3): 907-927.
|
18. |
Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci, 2009, 2(1): 183-202.
|
19. |
Katta R, Reddy G D, Sukavanam N. Computation of control for linear approximately controllable system using weighted Tikhonov regularization. Appl Math Comput, 2018, 317: 252-263.
|
20. |
Chung M K, Hanson J L, Ye J, et al. Persistent homology in sparse regression and its application to brain morphometry. IEEE Trans Med Imaging, 2015, 34(9): 1928-1939.
|
21. |
Huang S, Li J, Sun L, et al. Learning brain connectivity of Alzheimer's disease by sparse inverse covariance estimation. Neuroimage, 2010, 50(3): 935-949.
|
22. |
Yu Renping, Zhang Han, An Le, et al. Correlation-weighted sparse group representation for brain network construction in MCI classification. Hum Brain Mapp, 2017, 38(5): 2370-2383.
|
23. |
Sun Y, Lim J, Dai Zhongxiang, et al. The effects of a mid-task break on the brain connectome in healthy participants: a resting-state functional MRI study. Neuroimage, 2017, 152: 19-30.
|
24. |
Dosenbach N U, Fair D A, Cohen A L, et al. A dual-networks architecture of top-down control. Trends Cogn Sci, 2008, 12(3): 99-105.
|