1. |
Nagpal K, Foote D, Liu Yun, et al. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. NPJ Digit Med, 2019, 2(1): 1-10.
|
2. |
McCulloch W S, Pitts W J B O M B. A logical calculus of the ideas immanent in nervous activity. Bull Math Biol, 1990, 52(1-2): 99-115; discussion 73-97.
|
3. |
Hameed A A, Karlik B, Salman M S. Back-propagation algorithm with variable adaptive momentum. Knowledge-Based Systems, 2016, 114: 79-87.
|
4. |
Hornik K, Stinchcombe M B, White H. Multilayer feedforward networks are universal approximators. Neur Netw, 1989, 2(5): 359-366.
|
5. |
Jiang X, Pang Y, Li X, et al. Deep neural networks with Elastic Rectified Linear Units for object recognition. Neurocomputing, 2018, 275: 1132-1139.
|
6. |
Greenspan H, Van Ginneken B, Summers R M. Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Trans Med Imaging, 2016, 35(5): 1153-1159.
|
7. |
毛渤淳, 陈圣恺, 谢雨, 等. 经典深度学习算法对中文随机对照试验智能判别应用. 中国循证医学杂志, 2019, 19(11): 1262-1267.
|
8. |
Bray F I, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 2018, 68(6): 394-424.
|
9. |
Dagogo-Jack I, Shaw A T. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol, 2018, 15(2): 81-94.
|
10. |
常小丽, 朱丹, 任许利, 等. 全身麻醉复合硬膜外麻醉对肿瘤患者预后影响的 Meta 分析. 中国循证医学杂志, 2011, 11(8): 954-959.
|
11. |
杨娟, 母齐鸣, 谭琴. 影响肝内胆管癌手术预后的危险因素 Logistic 回归分析. 江苏大学学报: 医学版, 2019, 29(2): 161-165.
|
12. |
Jake L, Min W, Deepika G, et al. Big data application in biomedical research and health care: A literature review. Biomed Inform Insights, 2016, 8: 1-10.
|
13. |
Chen Y C, Ke W C, Chiu H W, et al. Risk classification of cancer survival using ANN with gene expression data from multiple laboratories. Comput Biol Med, 2014, 48(1): 1-7.
|
14. |
Giraud P, Giraud P, Gasnier A, et al. Radiomics and machine learning for radiotherapy in head and neck cancers. Front Oncol, 2019, 9: 174-184.
|
15. |
Lambin P, Leijenaar R T H, Deist T M, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol, 2017, 14(12): 749-762.
|
16. |
Arimura H, Soufi M, Kamezawa H, et al. Radiomics with artificial intelligence for precision medicine in radiation therapy. J Radiat Res, 2019, 60(1): 150-157.
|
17. |
Kontos D, Summers M M D R, Giger M L. Special section guest editorial: Radiomics and deep learning. J Med Imaging, 2018, 4(4): 041301.
|
18. |
Sun D, Wang M, Li A, et al. A multimodal deep neural network for human breast cancer prognosis prediction by integrating multi-dimensional data. IEEE/ACM Trans Comput Biol Bioinform, 2019, 16(3): 841-850.
|
19. |
Lai Y, Chen W, Hsu T, et al. Overall survival prediction of non-small cell lung cancer by integrating microarray and clinical data with deep learning. Sci Rep, 2020, 10(1): 4679.
|
20. |
Lee B, Chun S H, Hong J H, et al. DeepBTS: Prediction of recurrence-free survival of non-small cell lung cancer using a time-binned deep neural network. Sci Rep, 2020, 10(1): 1952.
|
21. |
Zhu X, Yao J, Huang J. Deep convolutional neural network for survival analysis with pathological images// IEEE International Conference on Bioinformatics & Biomedicine. Shenzhen: IEEE, 2016: 544-547.
|
22. |
Mobadersany P, Yousefi S, Amgad M, et al. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc Natl Acad Sci U S A, 2018, 115(13): 2970-2979.
|
23. |
Paul R, Hawkins S H, Balagurunathan Y, et al. Deep feature transfer learning in combination with traditional features predicts survival among patients with lung adenocarcinoma. Tomography, 2016, 2(4): 388-395.
|
24. |
Lao J, Chen Y, Li Z, et al. A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci Rep, 2017, 7(1): 10353.
|
25. |
Han W, Qin L, Bay C, et al. Deep transfer learning and radiomics feature prediction of survival of patients with high-grade gliomas. Am J Neuroradiol, 2020, 41(1): 40-48.
|
26. |
Bizzego A, Bussola N, Salvalai D, et al. Integrating deep and radiomics features in cancer bioimaging// 2019 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). Siena: IEEE, 2019: 1-8.
|
27. |
Tang Z, Xu Y, Jin L, et al. Deep learning of imaging phenotype and genotype for predicting overall survival time of glioblastoma patients. IEEE Trans Med Imaging, 2020, 39(6): 2100-2109.
|
28. |
Hosny A, Parmar C, Coroller T P, et al. Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study. PLoS Med, 2018, 15(11): e1002711.
|
29. |
Nie D, Lu J, Zhang H, et al. Multi-channel 3D deep feature learning for survival time prediction of brain tumor patients using multi-modal neuroimages. Sci Rep, 2019, 9(1): 1103.
|
30. |
Diamant A, Chatterjee A, Vallières M, et al. Deep learning in head & neck cancer outcome prediction. Sci Rep, 2019, 9(1): 2764.
|
31. |
Bychkov D, Linder N, Turkki R, et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci Rep, 2018, 8(1): 3395.
|
32. |
Zhang D, Zou L, Zhou X, et al. Integrating feature selection and feature extraction methods with deep learning to predict clinical outcome of breast cancer. IEEE Access, 2018, 6: 28936-28944.
|
33. |
Maggio V, Chierici M, Jurman G, et al. Distillation of the clinical algorithm improves prognosis by multi-task deep learning in high-risk Neuroblastoma. PloS One, 2018, 13(12): e0208924.
|
34. |
Chaudhary K, Poirion O, Lu L, et al. Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin Cancer Res, 2017, 24(6): 1248-1259.
|
35. |
Wong K K L, Rostomily R C, Wong S T C. Prognostic gene discovery in glioblastoma patients using deep learning. Cancers, 2019, 11(1): 53-68.
|
36. |
Xie G, Dong C, Kong Y, et al. Group lasso regularized deep learning for cancer prognosis from multi-omics and clinical features. Genes, 2019, 10(3): 240-255.
|
37. |
Esteva A, Kuprel B, Novoa R A, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature, 2017, 542(7639): 115-118.
|
38. |
Gu J, Wang Z, Kuen J, et al. Recent advances in convolutional neural networks. Pattern Recogn, 2018, 77: 354-377.
|
39. |
Pan S J, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng, 2010, 22(10): 1345-1359.
|
40. |
Lyu H, Lu H, Mou L. Learning a transferable change rule from a recurrent neural network for land cover change detection. Remote Sens, 2016, 8(6): 506-528.
|
41. |
Greff K, Srivastava R K, Koutnik J, et al. LSTM: A search space odyssey. IEEE Trans Neur Netw, 2017, 28(10): 2222-2232.
|
42. |
Liu W, Wang Z, Liu X, et al. A survey of deep neural network architectures and their applications. Neurocomputing, 2017, 234: 11-26.
|
43. |
Ibrahim R, Yousri N A, Ismail M A, et al. Multi-level gene/MiRNA feature selection using deep belief nets and active learning// 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Chicago: IEEE, 2014: 3957-3960.
|
44. |
Bluemke D A, Moy L, Bredella M A, et al. Assessing radiology research on artificial intelligence: A brief guide for authors, reviewers, and readers—From the Radiology editorial board. Radiology, 2020, 294(3): 487-489.
|
45. |
Monkam P, Qi S, Ma H, et al. Detection and classification of pulmonary nodules using convolutional neural networks: A survey. IEEE Access, 2019, 7: 78075-78091.
|
46. |
Azuaje F. Artificial intelligence for precision oncology: beyond patient stratification. NPJ Precis Oncol, 2019, 3(1): 6-11.
|
47. |
Girardi D, Kung J, Kleiser R, et al. Interactive knowledge discovery with the doctor-in-the-loop: a practical example of cerebral aneurysms research. Brain Inform, 2016, 3(3): 133-143.
|
48. |
Yasaka K, Akai H, Mackin D, et al. Precision of quantitative computed tomography texture analysis using image filtering: A phantom study for scanner variability. Medicine, 2018, 96(21): e6993.
|