1. |
中华人民共和国国家卫生健康委员会. 中国结直肠癌诊疗规范(2020年版). 中华外科杂志, 2020, 58(8): 561-585.
|
2. |
Zheng R, Zeng H, Zhang S, et al. Estimates of cancer incidence and mortality in China, 2013[J]. Chinese Journal of Cancer, 2017, 36(1): 384-389.
|
3. |
Bhandari A, Woodhouse M, Gupta S. Colorectal cancer is a leading cause of cancer incidence and mortality among adults younger than 50 years in the USA: a SEER-based analysis with comparison to other young-onset cancers. J Investig Med, 2017, 65(2): 311-315.
|
4. |
Even-Sapir E, Parag Y, Lerman H, et al. Detection of recurrence in patients with rectal cancer: PET/CT after abdominoperineal or anterior resection. Radiology, 2004, 232(3): 815-822.
|
5. |
Butch R J, Stark D D, Wittenberg J, et al. Staging rectal cancer by MR and CT. AJR Am J Roentgenol, 1986, 146(6): 1155-1160.
|
6. |
Cnudde V, Boone M N. High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth-Science Reviews, 2013, 123:1-17.
|
7. |
Jena M, Mishra S P, Mishra D. A survey on applications of machine learning techniques for medical image segmentation. International Journal of Engineering and Technology, 2018, 7(4): 4489-4495.
|
8. |
朱柏辉, 万智萍. 基于小波特性与边缘模糊检测的医学图像处理. 生物医学工程学杂志, 2014, 31(3): 493-498.
|
9. |
陈诗慧, 刘维湘, 秦璟, 等. 基于深度学习和医学图像的癌症计算机辅助诊断研究进展. 生物医学工程学杂志, 2017, 34(2): 314-319.
|
10. |
Dice L R. Measures of the amount of ecologic association between species. Ecology, 1945, 26(3):297-302.
|
11. |
Lambregts D J, Beets G L, Maas M, et al. Tumour ADC measurements in rectal cancer: effect of ROI methods on ADC values and interobserver variability. Eur Radiol, 2011, 21(12): 2567-2574.
|
12. |
Nougaret S, Vargas H, Lakhman Y, et al. Intravoxel incoherent motion-derived histogram metrics for assessment of response after combined chemotherapy and radiation therapy in rectal cancer: initial experience and comparison between single-section and volumetric analyses. Radiology, 2016, 280(2): 446-454.
|
13. |
van Heeswijk M M, Lambregts D M, van Griethuysen J J, et al. Automated and semiautomated segmentation of rectal tumor volumes on diffusion-weighted MRI: can it replace manual volumetry?. Int J Radiat Oncol Biol Phys, 2016, 94(4): 824-831.
|
14. |
Ha H I, Kim A Y, Yu C S, et al. Locally advanced rectal cancer: diffusion-weighted MR tumour volumetry and the apparent diffusion coefficient for evaluating complete remission after preoperative chemoradiation therapy. Eur Radiol, 2013, 23(12): 3345-3353.
|
15. |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation // International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015), Springer International Publishing, 2015: 234-241.
|
16. |
Mooij G, Bagulho I, Huisman H. Automatic segmentation of prostate zones. arXiv.org, 2018. arXiv:1806.07146.
|
17. |
LeCun Y, Boser B, Denker J S, et al. Back-propagation applied to handwritten zip-code recognition. Neural Computation, 1989, 1(4):541-551.
|
18. |
Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 2012, 25: 1097-1105.
|
19. |
Huang Gao, Liu Zhuang, Laurens V D M, et al. Densely connected convolutional networks. IEEE Computer Society, 2016. DOI: 10.1109/CVPR.2017.243.
|
20. |
Milletari F, Navab N, Ahmadi S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation//2016 Fourth International Conference on 3D Vision (3DV), IEEE, 2016: 565-571.
|
21. |
Trebeschi S, van Griethuysen J, Lambregts D, et al. Deep learning for fully-automated localization and segmentation of rectal cancer on multiparametric MR. Sci Rep, 2017, 7(1): 5301.
|
22. |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015.
|
23. |
Kim J, Oh J E, Lee J, et al. Rectal cancer: toward fully automatic discrimination of T2 and T3 rectal cancers using deep convolutional neural network. Int J Imaging Syst Technol, 2019, 29(3): 247-259.
|
24. |
Zhou Z, Siddiquee M, Tajbakhsh N, et al. UNet++: a nested U-net architecture for medical image segmentation. Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018), 2018, 11045: 3-11.
|
25. |
Han J, Moraga C. The Influence of the sigmoid function parameters on the speed of backpropagation learning// International Workshop on Artificial Neural Networks: from Natural to Artificial Neural Computation. Springer, 1995: 195-201.
|
26. |
Nair V, Hinton G E. Rectified linear units improve restricted Boltzmann machines// Proceedings of the 27th International Conference on International Conference on Machine Learning (ICML'10). 2010: 807-814.
|
27. |
Clevert D A, Unterthiner T, Hochreiter S. Fast and accurate deep network learning by exponential linear units (ELUs). Computer Science, 2015. arXiv:1511.07289.
|
28. |
Klambauer G, Unterthiner T, Mayr A, et al. Self-normalizing neural networks//Proceedings of the 31st international conference on neural information processing systems, 2017: 972-981.
|
29. |
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification//2015 IEEE International Conference on Computer Vision (ICCV), IEEE Computer Society, 2015: 1026-1034.
|
30. |
Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. Journal of Machine Learning Research, 2010, 9:249-256.
|
31. |
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2016: 770-778.
|
32. |
Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift//International Conference on Machine Learning. PMLR, 2015: 448-456.
|
33. |
Chen Wanli, Zhang Yue, He Junjun, et al. W-net: bridged U-net for 2D medical image segmentation. arXiv preprint, 2018, arXiv:1807.04459.
|