1. |
Schiattarella G G, Hill J A. Inhibition of hypertrophy is a good therapeutic strategy in ventricular pressure overload. Circulation, 2015, 131(16): 1435-1447.
|
2. |
Camacho Londoño J E, Tian Qinghai, Hammer K, et al. A background Ca2+ entry pathway mediated by TRPC1/TRPC4 is critical for development of pathological cardiac remodelling. Eur Heart J, 2015, 36(33): 2257-2266.
|
3. |
Kehat I, Molkentin J D. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation, 2010, 122(25): 2727-2735.
|
4. |
Magadum A, Ding Yishu, He Lan, et al. Live cell screening platform identifies PPARδ as a regulator of cardiomyocyte proliferation and cardiac repair. Cell Res, 2017, 27(8): 1002-1019.
|
5. |
Omidkhoda N, Wallace Hayes A, Reiter R J, et al. The role of MicroRNAs on endoplasmic reticulum stress in myocardial ischemia and cardiac hypertrophy. Pharmacol Res, 2019, 150: 104516.
|
6. |
Greco C M, Condorelli G. Epigenetic modifications and noncoding RNAs in cardiac hypertrophy and failure. Nat Rev Cardiol, 2015, 12(8): 488-497.
|
7. |
Zhou Tao, Qin G, Yang Liehong, et al. LncRNA XIST regulates myocardial infarction by targeting miR-130a-3p. J Cell Physiol, 2019, 234(6): 8659-8667.
|
8. |
De Gonzalo-Calvo D, Cenario A, Garlaschelli K A, et al. Translating the microRNA signature of microvesicles derived from human coronary artery smooth muscle cells in patients with familial hypercholesterolemia and coronary artery disease. J Mol Cell Cardiol, 2017, 106: 55-67.
|
9. |
Chen Li, Zhao Mingyue, Li Junli, et al. Critical role of X-box binding protein 1 in NADPH oxidase 4-triggered cardiac hypertrophy is mediated by receptor interacting protein kinase 1. Cell Cycle, 2017, 16(4): 348-359.
|
10. |
Wu Jiahan, Dong Tao, Chen Ting, et al. Hepatic exosome-derived miR-130a-3p attenuates glucose intolerance via suppressing PHLPP2 gene in adipocyte. Metabolism, 2019, 103: 154006.
|
11. |
Yang Xubin, Li Xiaoshan, Lin Qiongyan, et al. Up-regulation of microRNA-203 inhibits myocardial fibrosis and oxidative stress in mice with diabetic cardiomyopathy through the inhibition of PI3K/Akt signaling pathway via PIK3CA. Gene, 2019, 715: 143995.
|
12. |
Sadiq S, Crowley T M, Charchar F J, et al. MicroRNAs in a hypertrophic heart: from foetal life to adulthood. Biol Rev Camb Philos Soc, 2017, 92(3): 1314-1331.
|
13. |
Moghaddam A S, Afshari J T, Esmaeili S A, et al. Cardioprotective microRNAs: lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis, 2019, 285: 1-9.
|
14. |
Zaglia T, Ceriotti P, Campo A, et al. Content of mitochondrial calcium uniporter (MCU) in cardiomyocytes is regulated by microRNA-1 in physiologic and pathologic hypertrophy. Proc Natl Acad Sci U S A, 2017, 114(43): E9006-E9015.
|
15. |
Yuan Weiwei, Tang Chunmei, Zhu Wensi, et al. CDK6 mediates the effect of attenuation of miR-1 on provoking cardiomyocyte hypertrophy. Mol Cell Biochem, 2016, 412(1/2): 289-296.
|
16. |
Elia L, Contu R, Quintavalle M, et al. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation, 2009, 120(23): 2377-2385.
|
17. |
Nie Xiang, Fan Jiahui, Li Huaping, et al. miR-217 promotes cardiac hypertrophy and dysfunction by targeting PTEN. Mol Ther Nucleic Acids, 2018, 12: 254-266.
|
18. |
Thienpont B, Aronsen J M, Robinson E L, et al. The H3K9 dimethyltransferases EHMT1/2 protect against pathological cardiac hypertrophy. J Clin Invest, 2017, 127(1): 335-348.
|
19. |
Bao Qinxue, Zhao Mingyue, Chen Li, et al. MicroRNA-297 promotes cardiomyocyte hypertrophy via targeting sigma-1 receptor. Life Sci, 2017, 175: 1-10.
|
20. |
Marques F Z, Vizi D, Khammy O, et al. The transcardiac gradient of cardio-microRNAs in the failing heart. Eur J Heart Fail, 2016, 18(8): 1000-1008.
|
21. |
杨四宝, 高永建, 杨萍. 转化生长因子 β 与 microRNAs 的串话效应在心肌纤维化中的研究进展. 中国循环杂志, 2013, 28(7): 552-554.
|
22. |
Travers J G, Kamal F A, Robbins J, et al. Cardiac fibrosis: the fibroblast awakens. Circ Res, 2016, 118(6): 1021-1040.
|
23. |
朱永翔, 张耀庭, 王彤, 等. MicroRNA 在心肌纤维化中的研究进展. 心血管病学进展, 2018, 39(6): 903-906.
|
24. |
Wang Chengyu, Li Xiangdan, Hao Zhihong, et al. Insulin-like growth factor-1 improves diabetic cardiomyopathy through antioxidative and anti-inflammatory processes along with modulation of Akt/GSK-3β signaling in rats. Korean J Physiol Pharmacol, 2016, 20(6): 613-619.
|
25. |
Yang Fan, Li Ping, Li Haiyu, et al. microRNA-29b mediates the antifibrotic effect of tanshinone IIA in postinfarct cardiac remodeling. J Cardiovasc Pharmacol, 2015, 65(5): 456-464.
|
26. |
陈兴, 成传访, 方燕龄, 等. mTOR 信号通路在心肌肥大中的作用. 中国医药导报, 2018, 15(7): 16-19.
|
27. |
de Lima-Seolin B G, Nemec-Bakk A, Forsyth H, et al. Bucindolol modulates cardiac remodeling by attenuating oxidative stress in H9c2 cardiac cells exposed to norepinephrine. Oxid Med Cell Longev, 2019, 2019: 6325424.
|
28. |
Yang Xiaomei, Chen Gang, Chen Zhengxu. MicroRNA-200a-3p is a positive regulator in cardiac hypertrophy through directly targeting WDR1 as well as modulating PTEN/PI3K/AKT/CREB/WDR1 signaling. J Cardiovasc Pharmacol, 2019, 74: 453-461.
|