1. |
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504-507.
|
2. |
Hirschberg J, Manning C D. Advances in natural language processing. Science, 2015, 349(6245): 261-266.
|
3. |
Rybchak Z, Basystiuk O. Analysis of computer vision and image analysis technics. Econtechmod, 2017, 6(2): 79-84.
|
4. |
Mikolov T, Deoras A, Povey D, et al. Strategies for training large scale neural network language models// 2011 IEEE Workshop on Automatic Speech Recognition & Understanding. Hawaii: IEEE, 2011: 196-201.
|
5. |
Spencer M, Eickholt J, Cheng J. A deep learning network approach to ab initio protein secondary structure prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 2015, 12(1): 103-112.
|
6. |
Basheer I A, Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiological Methods, 2000, 43(1): 3-31.
|
7. |
Safavian S R, Landgrebe D. A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man, and Cybernetics, 1991, 21(3): 660-674.
|
8. |
Wu J, Ji Y, Zhao L, et al. A mass spectrometric analysis method based on PPCA and SVM for early detection of ovarian cancer. Computational and Mathematical Methods in Medicine, 2016, 2016: 6169249.
|
9. |
Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7): 1527-1554.
|
10. |
Bengio Y, Lamblin P, Popovici D, et al. Greedy layer-wise training of deep networks// Advances in Neural Information Processing Systems 19 (NIPS 2006). Vancouver: MIT Press, 2006: 153-160.
|
11. |
Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks// Advances in Neural Information Processing Systems 25 (NIPS 2012). Lake Tahoe: MIT Press, 2012: 1097-1105.
|
12. |
El Hihi S, Bengio Y. Hierarchical recurrent neural networks for long-term dependencies// Advances in Neural Information Processing Systems 8 (NIPS 1995). Denver: MIT Press, 1995: 493-499.
|
13. |
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]// Advances in Neural Information Processing Systems 27 (NIPS 2014). Montreal: MIT Press, 2014: 2672-2680.
|
14. |
Bruna J, Zaremba W, Szlam A, et al. Spectral networks and locally connected networks on graphs. arXiv preprint arXiv, 2013: 1312.6203.
|
15. |
Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 1962, 160(1): 106-154.
|
16. |
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE Computer Society, 2015: 1-9.
|
17. |
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
|
18. |
Werbos P J. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 1990, 78(10): 1550-1560.
|
19. |
Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent neural networks// International Conference on Machine Learning. Edinburgh: ACM, 2013: 1310-1318.
|
20. |
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735-1780.
|
21. |
Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv, 2016: 1609.02907.
|
22. |
Palm R B. Prediction as a candidate for learning deep hierarchical models of data. Copenhagen: Technical University of Denmark, 2012.
|
23. |
Jia Y, Shelhamer E, Donahue J, et al. Caffe: Convolutional architecture for fast feature embedding// Proceedings of the 22nd ACM International Conference on Multimedia. San Francisco: ACM, 2014: 675-678.
|
24. |
Bergstra J, Breuleux O, Bastien F, et al. Theano: a CPU and GPU math expression compiler// Proceedings of the Python for Scientific Computing Conference (SciPy). Austin: Enthought, 2010, 4(3).
|
25. |
Abadi M, Agarwal A, Barham P, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv, 2016: 1603.04467.
|
26. |
Chen T, Li M, Li Y, et al. Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems. arXiv preprint arXiv, 2015: 1512.01274.
|
27. |
Chollet F. Keras: Theano-based deep learning library. Code: https://github.com/fchollet. Documentation: http://keras.io, 2015.
|
28. |
Ketkar N. Introduction to pytorch// Deep learning with python. Berkeley: Apress, 2017: 195-208.
|
29. |
Team D. Deeplearning4j: Open-source distributed deep learning for the JVM. Apache Software Foundation License, 2016: 2.
|
30. |
Lipton Z C, Kale D C, Elkan C, et al. Learning to diagnose with LSTM recurrent neural networks. arXiv preprint arXiv, 2015: 1511.03677.
|
31. |
Haque A, Guo M, Miner A S, et al. Measuring depression symptom severity from spoken language and 3D facial expressions. arXiv preprint arXiv, 2018: 1811.08592.
|
32. |
Kamnitsas K, Ledig C, Newcombe V F J, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Medical Image Analysis, 2017, 36: 61-78.
|
33. |
Wang S, Zhou M, Liu Z, et al. Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation. Medical Image Analysis, 2017, 40: 172-183.
|
34. |
Zhao X, Wu Y, Song G, et al. A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Medical Image Analysis, 2018, 43: 98-111.
|
35. |
Alom M Z, Hasan M, Yakopcic C, et al. Recurrent residual convolutional neural network based on U-net (R2U-net) for medical image segmentation. arXiv preprint arXiv, 2018: 1802.06955.
|
36. |
叶海, 冯开平, 谢红宁. 基于全卷积网络的胎儿脑部超声图像分割算法. 现代计算机, 2019(17): 12.
|
37. |
Anthimopoulos M, Christodoulidis S, Ebner L, et al. Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Transactions on Medical Imaging, 2016, 35(5): 1207-1216.
|
38. |
Shen W, Zhou M, Yang F, et al. Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification. Pattern Recognition, 2017, 61: 663-673.
|
39. |
Esteva A, Kuprel B, Novoa R A, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature, 2017, 542(7639): 115-118.
|
40. |
Mohsen H, El-Dahshan E S A, El-Horbaty E S M, et al. Classification using deep learning neural networks for brain tumors. Future Computing and Informatics Journal, 2018, 3(1): 68-71.
|
41. |
Xie Y, Zhang J, Xia Y, et al. Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT. Information Fusion, 2018, 42: 102-110.
|
42. |
Mao C, Yao L, Luo Y. ImageGCN: Multi-relational image graph convolutional networks for disease identification with chest X-rays. arXiv preprint arXiv, 2019: 1904.00325.
|
43. |
鉏家欢, 潘乔. 融合图像和指标的阿尔茨海默病多分类诊断模型. 智能计算机与应用, 2019(4): 6-12.
|
44. |
刘振宇, 宋建聪. 基于深度学习的白内障自动诊断方法研究. 微处理机, 2019(3): 48-52.
|
45. |
Acharya U R, Fujita H, Oh S L, et al. Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Information Sciences, 2017, 415: 190-198.
|
46. |
李岭海. 基于深度学习的心脏病检测的研究. 现代计算机, 2017(9): 91-93, 110.
|
47. |
Acharya U R, Oh S L, Hagiwara Y, et al. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Computers in Biology and Medicine, 2018, 100: 270-278.
|
48. |
Quang D, Xie X. DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Research, 2016, 44(11): e107-e107.
|
49. |
Pan X, Rijnbeek P, Yan J, et al. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks. BMC Genomics, 2018, 19(1): 511.
|
50. |
Liu Q, Xia F, Yin Q, et al. Chromatin accessibility prediction via a hybrid deep convolutional neural network. Bioinformatics, 2018, 34(5): 732-738.
|
51. |
李洪顺, 于华, 宫秀军. 一种只利用序列信息预测 RNA 结合蛋白的深度学习模型. 计算机研究与发展, 2018, 55(1): 93-101.
|
52. |
Rossi E, Monti F, Bronstein M, et al. ncRNA classification with graph convolutional networks. arXiv preprint arXiv, 2019: 1905.06515.
|