1. |
Tsu V D, Jeronimo J, Anderson B O. Why the time is right to tackle breast and cervical cancer in low-resource settings. Bulletin of the World Health Organization, 2013, 91(9): 683-690.
|
2. |
Saad G, Khadour A, Kanafani Q. ANN and Adaboost application for automatic detection of microcalcifications in breast cancer. Egypt J Radiol Nucl Med, 2016, 47(4): 1803-1814.
|
3. |
Mabrouk M S, Afify H M, Marzouk S Y. Fully automated computer-aided diagnosis system for micro calcifications cancer based on improved mammographic image techniques. Ain Shams Eng J, 2019, 10: 517-527.
|
4. |
陈珊. 基于钼靶图像的乳腺肿瘤诊断若干关键性技术研究. 哈尔滨: 哈尔滨工业大学, 2018.
|
5. |
王瑞平, 万柏坤, 高上凯. 独立分量分析在乳腺钼靶X片感兴趣区域提取中的应用. 中国生物医学工程学报, 2007, 26(4): 532-536.
|
6. |
Zhang Y D, Wang S H, Liu G, et al. Computer-aided diagnosis of abnormal breasts in mammogram images by weighted-type fractional Fourier transform. Adv Mech Eng, 2016, 8(2): 629-643.
|
7. |
彭庆涛, 吴水才, 高宏建, 等. 基于小波分析和灰度纹理特征的乳腺X线图像微钙化点区域的提取. 北京生物医学工程, 2015, 34(5): 462-467.
|
8. |
Wang K, Dong M, Yong Z, et al. Regions of micro-calcifications clusters detection based on new features from imbalance data in mammograms// Proceedings of the 8th International Conference on Graphic and Image Processing. Berlin: Springer, 2016, 272-282.
|
9. |
Liu X, Mei M, Liu J, et al. Microcalcification detection in full-field digital mammograms with PFCM clustering and weighted SVM-based method. EURASIP J Adv Signal Process, 2015(1): 73.
|
10. |
Mordang J J, Janssen T, Bria A, et al. Automatic microcalcification detection in multi-vendor mammography using convolutional neural networks// International Workshop on Breast Imaging. Cham: Springer, 2016: 35-42.
|
11. |
Schlegl T, Seeböck P, Waldstein S M, et al. Fast unsupervised anomaly detection with generative adversarial networks. Med Image Anal, 2019, 54: 30-44.
|
12. |
Chen H, Dou Q, Wang X, et al. Mitosis detection in breast cancer histology images via deep cascaded networks// Thirtieth Aaai Conference on Artificial Intelligence. Phoenix: AAAI Press, 2016.
|
13. |
Wang D, Khosla A, Gargeya R, et al. Deep learning for identifying metastatic breast cancer. arXiv preprint arXiv: 2016, 1606.05718.
|
14. |
Wang J, Yang Y. A context-sensitive deep learning approach for microcalcification detection in mammograms. Pattern Recognit, 2018, 78: 12-22.
|
15. |
张新生, 王哲. 结合深度学习与特征多尺度融合的微钙化簇检测. 模式识别与人工智能, 2018, 31(11): 66-77.
|
16. |
Kooi T, Litjens G, Van Ginneken B, et al. Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal, 2017, 35: 303-312.
|
17. |
Nagarajan V, Britto C E, Veeraputhiran M S. Feature extraction based on empirical mode decomposition for automatic mass classification of mammogram images. Medicine in Novel Technology and Devices, 2019, 1: 100004.
|
18. |
Raghavendra U, Acharya U R, Fujita H, et al. Application of Gabor wavelet and Locality Sensitive Discriminant Analysis for automated identification of breast cancer using digitized mammogram images. Appl Soft Comput, 2016, 46: 151-161.
|
19. |
朱丽丽. 基于非下采样剪切波变换和PCNN模型的乳腺钙化点检测. 兰州: 兰州大学, 2018.
|
20. |
Saif D, El-Gokhy S M, Sallam E. Deep Belief Networks-based framework for malware detection in Android systems. Alex Eng J, 2018, 57: 4049-4057.
|
21. |
Keyvanrad M A, Homayounpour M M. Deep belief network training improvement using elite samples minimizing free energy. Pattern Recognit Artif Intell, 2015, 29(5): 1-18.
|
22. |
阮松, 陈松灿, 王敏. 采用多尺度多级组合分类器快速定位乳腺X片中的感兴趣区域. 中国生物医学工程学报, 2009, 28(5): 674-679.
|
23. |
程运福, 张光玉, 崔栋, 等. 基于乳腺X线图像的微钙化点区域自动检测算法研究. 中国医学物理学杂志, 2013, 30(2): 3992-3996.
|
24. |
Muthuvel M, Thangaraju B, Chinnasamy G. Microcalcification cluster detection using multiscale products based Hessian matrix via the Tsallis thresholding scheme. Pattern Recognit Lett, 2017, 94: 127-133.
|