1. |
Ceylan H, Yasa I C, Kilic U, et al. Translational prospects of untethered medical microrobots. Prog Biomed Eng, 2019, 1(1): 012002-012024.
|
2. |
Pane S, Puigmarti‐luis J, Bergeles C, et al. Imaging technologies for biomedical micro-and nanoswimmers. Adv Mater Technol, 2019, 4(4): 1800575-1800591.
|
3. |
Coyle S, Majidi C, LeDuc P, et al. Bio-inspired soft robotics: material selection, actuation, and design. Extreme Mech Lett, 2018, 22: 51-59.
|
4. |
Sitti M. Miniature soft robots-road to the clinic. Nat Rev Mater, 2018, 3(6): 74-75.
|
5. |
Yang Jia, Zhang Chuang, Wang Xiaodong, et al. Development of micro- and nanorobotics: a review. Sci China Technol Sci, 2019, 62(1): 1-20.
|
6. |
Hajiaghajani A, Kim D, Abdolali A, et al. Patterned magnetic fields for remote steering and wireless powering to a swimming microrobot. IEEE-ASME Transactions on Mechatronics, 2020, 25(1): 207-216.
|
7. |
Honda T, Arai K I, Ishiyama K. Micro swimming mechanisms propelled by external magnetic fields. IEEE Trans Magn, 1996, 32(5): 5085-5087.
|
8. |
Xiao Y, Jiang Z, Tong X, et al. Biomimetic locomotion of electrically powered “Janus” soft robots using a liquid crystal polymer. Adv Mater, 2019, 31(36): 1903452-1903461.
|
9. |
Nocentini S, Parmeggiani C, Martella D, et al. Optically driven soft micro robotics. Adv Opt Mater, 2018, 6(14): 1800207-1800224.
|
10. |
Palagi S, Fischer P. Bioinspired microrobots. Nat Rev Mater, 2018, 3(6): 113-124.
|
11. |
Ahmed D, Lu M, Nourhani A, et al. Selectively manipulable acoustic-powered microswimmers. Sci Rep, 2015, 5: 9744.
|
12. |
Mu Y, Hu T, Gong H, et al. A dual-stage low-power converter driving for piezoelectric actuator applied in micro robot. International Journal of Advanced Robotic Systems, 2019, 16(1): 1-8.
|
13. |
Jang D, Jeong J, Song H, et al. Targeted drug delivery technology using untethered microrobots: a review. J Micromech Microeng, 2019, 29(5): 053002-053027.
|
14. |
Xu D, Wang Y, Liang C, et al. Self-Propelled micro/nanomotors for on-demand biomedical cargo transportation. Small, 2020, 16(27): e1902464.
|
15. |
Ma X, Feng H, Liang C, et al. Mesoporous silica as micro/nano-carrier: from passive to active cargo delivery, a mini review. J Mater Sci Technol, 2017, 33(10): 1067-1074.
|
16. |
Mou F Z, Kong L, Chen C R, et al. Light-controlled propulsion, aggregation and separation of water-fuelled TiO2/Pt Janus submicromotors and their “on-the-fly” photocatalytic activities. Nanoscale, 2016, 8(9): 4976-4983.
|
17. |
Halder A, Sun Y. Biocompatible propulsion for biomedical micro/nano robotics. Biosens Bioelectron, 2019, 139: 111334.
|
18. |
Park B W, Zhuang J, Yasa O, et al. Multifunctional bacteria-driven microswimmers for targeted active drug delivery. ACS Nano, 2017, 11(9): 8910-8923.
|
19. |
Schuerle S, Soleimany A P, Yeh T, et al. Synthetic and living micropropellers for convection-enhanced nanoparticle transport. Sci Adv, 2019, 5(4): eaav4803.
|
20. |
Zhang H, Mourran A, Möller M. Dynamic switching of helical microgel ribbons. Nano Lett, 2017, 17(3): 2010-2014.
|
21. |
Bagheri A, Jin J. Photopolymerization in 3D printing. ACS Appl Polym Mater, 2019, 1(4): 593-611.
|
22. |
Camposeo A, Persano L, Farsari M, et al. Additive manufacturing: applications and directions in photonics and optoelectronics. Adv Opt Mater, 2019, 7(1): 1800419.
|
23. |
Gonzalez-Henriquez C M, Sarabia-Vallejos M A, Rodriguez-Hernandez J. Polymers for additive manufacturing and 4D-printing: materials, methodologies, and biomedical applications. Prog Polym Sci, 2019, 94: 57-116.
|
24. |
Wang X P, Qin X H, Hu C Z, et al. 3D printed enzymatically biodegradable soft helical microswimmers. Adv Funct Mater, 2018, 28(45): 1804107-1804115.
|
25. |
Lamont A C, Alsharhan A T, Sochol R D. Geometric determinants of in-situ direct laser writing. Sci Rep, 2019, 9(1): 394.
|
26. |
Bozuyuk U, Yasa O, Yasa I C, et al. Light-triggered drug release from 3D-printed magnetic chitosan microswimmers. ACS Nano, 2018, 12(9): 9617-9625.
|
27. |
Wu Z, Lin X, Zou X, et al. Biodegradable protein-based rockets for drug transportation and light-triggered release. ACS Appl Mater Interfaces, 2015, 7(1): 250-255.
|
28. |
Utke I, Michler J, Winkler R, et al. Mechanical properties of 3D nanostructures obtained by focused electron/ion beam-induced deposition: a review. Micromachines, 2020, 11(4): 397.
|
29. |
Gray M E, Meehan J, Blair E O, et al. Biocompatibility of common implantable sensor materials in a tumor xenograft model. Journal of Biomedical Materials Research B-Applied Biomaterials, 2019, 107(5): 1620-1633.
|
30. |
Sarath K S, Beena P N, Elessy A. Nanorobots a future device for diagnosis and treatment. J Pharm Pharmaceutics, 2018, 5(1): 44-49.
|
31. |
Field R D, Anandakumaran P N, Sia S K. Soft medical microrobots: design components and system integration. Appl Phys Rev, 2019, 6(4): 041305-041325.
|
32. |
Hortelao A C, Patino T, Perez-Jimenez A, et al. Enzyme-powered nanobots enhance anticancer drug delivery. Adv Funct Mater, 2018, 28(25): 1705086-1705096.
|
33. |
Soto F, Chrostowski R. Frontiers of medical micro/nanorobotics: in vivo applications and commercialization perspectives toward clinical uses. Front Bioeng Biotechnol, 2018, 6: 170.
|
34. |
Li J, Li X, Luo T, et al. Development of a magnetic microrobot for carrying and delivering targeted cells. Sci Robot, 2018, 3(19): eaat8829.
|
35. |
Chatzipirpiridis G, Ergeneman O, Pokki J, et al. Electroforming of implantable tubular magnetic microrobots for wireless ophthalmologic applications. Adv Healthc Mater, 2015, 4(2): 209-214.
|
36. |
Mapara S S, Patravale V B. Medical capsule robots: a renaissance for diagnostics, drug delivery and surgical treatment. J Control Release, 2017, 261: 337-351.
|
37. |
Wang B, Kostarelos K, Nelson B J, et al. Trends in micro-/nanorobotics: materials development, actuation, localization, and system integration for biomedical applications. Adv Mater, 2021, 33(4): e2002047.
|
38. |
Wang D, Gao C, Zhou C, et al. Leukocyte membrane-coated liquid metal nanoswimmers for actively targeted delivery and synergistic chemophotothermal therapy. Research, 2020, 2020(3): 3676954.
|
39. |
Liao P, Xing L, Zhang S, et al. Magnetically driven undulatory microswimmers integrating multiple rigid segments. Small, 2019, 15(36): e1901197.
|
40. |
Du X, Cui H, Xu T, et al. Reconfiguration, camouflage, and color-shifting for bioinspired adaptive hydrogel-based millirobots. Adv Funct Mater, 2020, 30(10): 1909202-1909211.
|
41. |
Kim Y, Parada G A, Liu Shengduo, et al. Ferromagnetic soft continuum robots. Sci Robot, 2019, 4(33): eaax7329.
|
42. |
Koens L, Zhang H, Moeller M, et al. The swimming of a deforming helix. Eur Phys J E S, 2018, 41(10): 119.
|
43. |
Charreyron S L, Boehler Q, Danun A N, et al. A magnetically navigated microcannula for subretinal injections. IEEE Trans Biomed Eng, 2021, 68(1): 119-129.
|
44. |
Yang G Z, Bellingham J, Dupont P E, et al. The grand challenges of Science Robotics. Sci Robot, 2018, 3(14): 7650-7664.
|
45. |
Zhang C, Wang W X, Xi N, et al. Development and future challenges of bio-syncretic robots. Engineering, 2018, 4(4): 452-463.
|
46. |
Oh B, Park Y G, Jung H, et al. Untethered soft robotics with fully integrated wireless sensing and actuating systems for somatosensory and respiratory functions. Soft Robot, 2020, 7(5): 564-573.
|