1. |
Hedlund E, Deng Qiaolin. Single-cell RNA sequencing: technical advancements and biological applications. Mol Aspects Med, 2018, 59: 36-46.
|
2. |
Aldridge S, Teichmann S A. Single cell transcriptomics comes of age. Nat Commun, 2020, 11(1): 4307.
|
3. |
Stuart T, Satija R. Integrative single-cell analysis. Nat Rev Genet, 2019, 20(5): 257-272.
|
4. |
Haghverdi L, Lun A, Morgan M D, et al. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat Biotechnol, 2018, 36(5): 421-427.
|
5. |
Korsunsky I, Millard N, FAN J, et al. Fast, sensitive and accurate integration of single-cell data with harmony. Nat Methods, 2019, 16(12): 1289-1296.
|
6. |
Stuart T, Butler A, Hoffman P, et al. Comprehensive integration of single-cell data. Cell, 2019, 177(7): 1888-1902.
|
7. |
Butler A, Hoffman P, Smibert P, et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol, 2018, 36(5): 411-420.
|
8. |
Lin Y, Ghazanfar S, Wang K, et al. scMerge leverages factor analysis, stable expression, and pseudoreplication to merge multiple single-cell RNA-seq datasets. Proc Natl Acad Sci U S A, 2019, 116(20): 9775-9784.
|
9. |
Hie B, Bryson B, Berger B. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. Nat Biotechnol, 2019, 37(6): 685-691.
|
10. |
Gagnon-Bartsch J A, Speed T P. Using control genes to correct for unwanted variation in microarray data. Biostatistics, 2012, 13(3): 539-552.
|
11. |
Polański K, Young M D, Miao Z, et al. BBKNN: fast batch alignment of single cell transcriptomes. Bioinformatics, 2020, 36(3): 964-965.
|
12. |
Barkas N, Petukhov V, Nikolaeva D, et al. Joint analysis of heterogeneous single-cell RNA-seq dataset collections. Nat Methods, 2019, 16(8): 695-698.
|
13. |
Welch J D, Kozareva V, Ferreira A, et al. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell, 2019, 177(7): 1873-1887.
|
14. |
Yang Z, Michailidis G. A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data. Bioinformatics, 2016, 32(1): 1-8.
|
15. |
Shaham U, Stanton K P, Zhao J, et al. Removal of batch effects using distribution-matching residual networks. Bioinformatics, 2017, 33(16): 2539-2546.
|
16. |
Zou B, Zhang T, Zhou R, et al. DeepMNN: deep learning-based single-cell RNA sequencing data batch correction using mutual nearest neighbors, Front Genet, 2021, 12: 708981.
|
17. |
Lotfollahi M, Wolf F A, Theis F J. ScGen predicts single-cell perturbation responses. Nat Methods, 2019, 16(8): 715-721.
|
18. |
Wang Dongfang, Hou Siyu, Zhang Lei, et al. IMAP: integration of multiple single-cell datasets by adversarial paired transfer networks. Genome Biol, 2021, 22(1): 63.
|
19. |
Zhang Q, He Y, Luo N, et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell, 2019, 179(4): 829-845.
|
20. |
Liao J, Yu Z, Chen Y, et al. Single-cell RNA sequencing of human kidney. Sci Data, 2020, 7(1): 4.
|
21. |
Trujillo C A, Gao R, Negraes P D, et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell, 2019, 25(4): 558-569.e7.
|
22. |
Qi F, Qian S, Zhang S, et al. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun, 2020, 526(1): 135-140.
|
23. |
Zhang H, Kang Z, Gong H, et al. Digestive system is a potential route of COVID-19: an analysis of single-cell coexpression pattern of key proteins in viral entry process. Gut, 2020, 69(6): 1010-1018.
|
24. |
Liao M, Liu Y, Yuan J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med, 2020, 26(6): 842-844.
|
25. |
Zhang J Y, Wang X M, Xing X, et al. Single-cell landscape of immunological responses in patients with COVID-19. Nat Immunol, 2020, 21(9): 1107-1118.
|
26. |
Tran H T, Ang K S, Chevrier M, et al. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol, 2020, 21(1): 12.
|
27. |
Teichmann S, Efremova M. Method of the year 2019: single-cell multimodal omics. Nat Methods, 2020, 17(1): 1.
|
28. |
Zhu C, Preissl S, Ren B. Single-cell multimodal omics: the power of many. Nat Methods, 2020, 17(1): 11-14.
|
29. |
Colomé-Tatché M, Theis F J. Statistical single cell multi-omics integration. Curr Opin Syst Biol, 2018, 7: 54-59.
|
30. |
Pliner H, Packer J S, Mcfaline-Figueroa J L, et al. Cicero predicts cis-Regulatory DNA interactions from single-cell chromatin accessibility data. Mol Cell, 2018, 71(5): 858-871.
|
31. |
Mo A, Mukamel E A, Davis F P, et al. Epigenomic signatures of neuronal diversity in the mammalian brain. Neuron, 2015, 86(6): 1369-1384.
|
32. |
Shen R, Olshen A B, Ladanyi M. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics, 2009, 25(22): 2906-2912.
|
33. |
Wang B, Mezlini A M, Demir F, et al. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods, 2014, 11(3): 333-337.
|
34. |
Duren Z, Chen X, Zamanighomi M, et al. Integrative analysis of single-cell genomics data by coupled nonnegative matrix factorizations. Proc Natl Acad Sci U S A, 2018, 115(30): 7723-7728.
|
35. |
Zeng W, Chen X, Duren Z, et al. DC3 is a method for deconvolution and coupled clustering from bulk and single-cell genomics data. Nat Commun, 2019, 10(1): 4613.
|
36. |
Argelaguet R, Velten B, Arnol D, et al. Multi-Omics factor analysis-a framework for unsupervised integration of multi-omics data sets. Mol Syst Biol, 2018, 14(6): e8124.
|
37. |
Welch J D, Hartemink A J, Prins J F. MATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics. Genome Biol, 2017, 18(1): 138.
|
38. |
Argelaguet R, Clark S J, Mohammed H, et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature, 2019, 576(7787): 487-491.
|
39. |
Lake B B, Chen S, Sos B C, et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat Biotechnol, 2018, 36(1): 70-80.
|