1. |
World Health Organization. Cardiovascular diseases (CVDs). [2017-05-17]. https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
|
2. |
Moukadem A, Dieterlen A, Hueber N, et al. A robust heart sounds segmentation module based on S-transform. Biomed Signal Process Control, 2013, 8(3): 273-281.
|
3. |
Pedrosa J, Castro A, Vinhoza T T. Automatic heart sound segmentation and murmur detection in pediatric phonocardiograms//2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, 2014: 2294-2297.
|
4. |
Schmidt S E, Holst-Hansen C, Graff C, et al. Segmentation of heart sound recordings by a duration-dependent hidden Markov model. Physiol Meas, 2010, 31(4): 513-529.
|
5. |
Springer D B, Tarassenko L, Clifford G D. Logistic Regression-HSMM-Based heart sound segmentation. IEEE Trans Biomed Eng, 2016, 63(4): 822-832.
|
6. |
Liu C, Springer D, Li Q, et al. An open access database for the evaluation of heart sound algorithms. Physiol Meas, 2016, 37(12): 2181-2213.
|
7. |
Messner E, Zohrer M, Pernkopf F. Heart sound segmentation—an event detection approach using deep recurrent neural networks. IEEE Trans Biomed Eng, 2018, 65(9): 1964-1974.
|
8. |
Renna F, Oliveira J, Coimbra M T. Deep convolutional neural networks for heart sound segmentation. IEEE J Biomed Health Inform, 2019, 23(6): 2435-2445.
|
9. |
Potes C, Parvaneh S, Rahman A, et al. Ensemble of feature-based and deep learning-based classifiers for detection of abnormal heart sounds//2016 Computing in Cardiology Conference (CinC), IEEE, 2016: 621-624.
|
10. |
Chen Jianfei, Dang Xin. Heart sound analysis based on extended features and related factors//2019 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 2019: 2189-2194.
|
11. |
Oztavli E, Aptoula E. Effect of early and late fusion on heart sound classification//Signal Processing and Communications Applications Conference, IEEE, 2018: 1-4.
|
12. |
Zabihi M, Rad A B, Kiranyaz S, et al. Heart sound anomaly and quality detection using ensemble of neural networks without segmentation//2016 Computing in Cardiology Conference (CinC), IEEE, 2016: 613-616.
|
13. |
Yadav A, Dutta M K, Travieso C M, et al. Automatic classification of normal and abnormal PCG recording heart sound recording using fourier transform//2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI), IEEE, 2018: 1-9.
|
14. |
Upretee P, Yüksel M E. Accurate classification of heart sounds for disease diagnosis by a single time-varying spectral feature: preliminary results//2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT). Kayseri, TURKEY: IEEE, 2019: 1-4.
|
15. |
Li Jinghui, Ke Li, Du Qiang, et al. Heart sound signal classification algorithm: a combination of wavelet scattering transform and twin support vector machine. IEEE Access, 2019, 7: 179339-179348.
|
16. |
Hamidi M, Ghassemian H, Imani M. Classification of heart sound signal using curve fitting and fractal dimension. Biomed Signal Process Control, 2018, 39: 351-359.
|
17. |
Ren Zhao, Cummins N, Pandit V, et al. Learning image-based representations for heart sound classification// International Conference. 2018: 143-147.
|
18. |
Li Fen, Liu Ming, Zhao Yuejin, et al. Feature extraction and classification of heart sound using 1D convolutional neural networks. EURASIP J Adv Signal Process, 2019, 2019(1): 59.
|
19. |
Krishnan P T, Balasubramanian P, Umapathy S. Automated heart sound classification system from unsegmented phonocardiogram (PCG) using deep neural network. Phys Eng Sci Med, 2020, 43(2): 505-515.
|
20. |
Meintjes A, Lowe A, Legget M. Fundamental heart sound classification using the continuous wavelet transform and convolutional neural networks//2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2018: 409-412.
|
21. |
Noman F, Ting C M, Salleh S H, et al. Short-segment heart sound classification using an ensemble of deep convolutional neural networks//ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2019: 1318-1322.
|
22. |
Singh S A, Majumder S, Mishra M. Classification of short unsegmented heart sound based on deep learning//2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), IEEE, 2019: 1-6.
|
23. |
Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60(6): 84-90.
|
24. |
Qian Kun, Ren Zhao, Dong Fengquan, et al. Deep wavelets for heart sound classification//2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), IEEE, 2019: 1-2.
|
25. |
Chen Tianqi, Guestrin C. XGBoost: A Scalable Tree Boosting System// The International Conference on Knowledge Discovery and Data Mining. 2016. arXiv: 1603.02754.
|
26. |
Shi H, Wang H, Huang Y, et al. A hierarchical method based on weighted extreme gradient boosting in ECG heartbeat classification. Comput Methods Programs Biomed, 2019, 171: 1-10.
|
27. |
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput, 1997, 9(8): 1735-1780.
|
28. |
Sainath T N, Vinyals O, Senior A, et al. Convolutional, long short-term memory, fully connected deep neural networks//2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2015: 4580-4584.
|