1. |
Rohm M, Schneiders M, Müller C, et al. Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury. Artif Intell Med, 2013, 59(2): 133-142.
|
2. |
López-Larraz E, Trincado-Alonso F, Rajasekaran V, et al. Control of an ambulatory exoskeleton with a brain-machine interface for spinal cord injury gait rehabilitation. Front Neurosci, 2016, 10: 359.
|
3. |
Meng J, Zhang S, Bekyo A, et al. Noninvasive electroencephalogram based control of a robotic arm for reach and grasp tasks. Sci Rep, 2016, 6: 38565.
|
4. |
Doud A J, Lucas J P, Pisansky M T, et al. Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain-computer interface. PloS One, 2011, 6(10): 263-296.
|
5. |
Chaudhary U, Birbaumer N, Ramos-Murguialday A. Brain–computer interfaces for communication and rehabilitation. Nat Rev Neurol, 2016, 12(9): 513.
|
6. |
Pfurtscheller G, Brunner C, Schlögl A, et al. Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage, 2006, 31(1): 153-159.
|
7. |
Kato K, Takahashi K, Mizuguchi N, et al. Online detection of amplitude modulation of motor-related EEG desynchronization using a lock-in amplifier: Comparison with a fast Fourier transform, a continuous wavelet transform, and an autoregressive algorithm. J Neurosci Meth, 2018, 293: 289-298.
|
8. |
Taran S, Bajaj V. Motor imagery tasks-based EEG signals classification using tunable-Q wavelet transform. Neural Comput Appl, 2019, 31: 6925-6932.
|
9. |
Kevric J, Subasi A. Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomed Signal Proces, 2017, 31: 398-406.
|
10. |
Lotte F, Guan C. Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans Biomed Eng, 2010, 58(2): 355-362.
|
11. |
Lotte F, Bougrain L, Cichocki A, et al. A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J Neural Eng, 2018, 15(3): 031005.
|
12. |
Chu Yaqi, Zhao Xingang, Zou Yijun, et al. Decoding multiclass motor imagery EEG from the same upper limb by combining Riemannian geometry features and partial least squares regression. J Neural Eng, 2020, 17(4): 046029.
|
13. |
Duan Lijuan, Bao Menghu, Cui Song, et al. Motor imagery EEG classification based on kernel hierarchical extreme learning machine. Cogn Comput, 2017, 9(6): 758-765.
|
14. |
Shin H C, Roth H R, Gao M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging, 2016, 35(5): 1285-1298.
|
15. |
Al-Ayyoub M, Nuseir A, Alsmearat K, et al. Deep learning for Arabic NLP: A survey. J Comput Sci, 2018, 26: 522-531.
|
16. |
Garland J, Gregg D. Low complexity multiply accumulate unit for weight-sharing convolutional neural networks. IEEE Comput Archit L, 2017, 16(2): 132-135.
|
17. |
Tang Z, Li C, Sun S. Single-trial EEG classification of motor imagery using deep convolutional neural networks. Optik, 2017, 130: 11-18.
|
18. |
孔祥浩, 马琳, 薄洪健, 等. CNN 与 CSP 相结合的脑电特征提取与识别方法研究. 信号处理, 2018, 34(2): 164-173.
|
19. |
Pérez-Zapata A F, Cardona-Escobar A F, Jaramillo-Garzón J A, et al. Deep Convolutional Neural Networks and power spectral density features for Motor Imagery classification of EEG Signals// 2018 International Conference on Augmented Cognition. Cham: Springer, 2018: 158-169.
|
20. |
Sakhavi S, Guan C, Yan S. Learning temporal information for brain-computer interface using convolutional neural networks. IEEE Trans Neur Net Lear, 2018, 29(11): 5619-5629.
|
21. |
胡章芳, 张力, 黄丽嘉, 等. 基于时频域的卷积神经网络运动想象脑电信号识别方法. 计算机应用, 2019, 39(8): 2480-2483.
|
22. |
Schirrmeister R T, Springenberg J T, Fiederer L D J, et al. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum Brain Mapp, 2017, 38(11): 5391-5420.
|
23. |
Tabar Y R, Halici U. A novel deep learning approach for classification of EEG motor imagery signals. J Neural Eng, 2016, 14(1): 016003.
|
24. |
Delorme A, Mullen T, Kothe C, et al. EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced EEG processing. Comput Intel Neurosc, 2011, 2011: 10.
|
25. |
Ang K K, Chin Z Y, Wang C, et al. Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front Neurosci, 2012, 6: 39.
|
26. |
Wu Wei, Chen Zhe, Gao Xiaorong, et al. Probabilistic common spatial patterns for multichannel EEG analysis. IEEE Trans Pattern Anal, 2014, 37(3): 639-653.
|
27. |
Quitadamo L R, Cavrini F, Sbernini L, et al. Support vector machines to detect physiological patterns for EEG and EMG-based human–computer interaction: a review. J Neural Eng, 2017, 14(1): 011001.
|
28. |
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436.
|
29. |
Billinger M, Daly I, Kaiser V, et al. Is it significant? Guidelines for reporting BCI performance// 2012 Towards Practical Brain-Computer Interfaces. Berlin: Springer, 2012: 333-354.
|
30. |
Wright S J. Coordinate descent algorithms. Math Program, 2015, 151(1): 3-34.
|