- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R.China;
The dynamic coupling of stent degradation and vessel remodeling can influence not only the structural morphology and material property of stent and vessel, but also the development of in-stent restenosis. The research achievements of biomechanical modelling and analysis of stent degradation and vessel remodeling were reviewed; several noteworthy research perspectives were addressed, a stent-vessel coupling model was developed based on stent damage function and vessel growth function, and then concepts of matching ratio and risk factor were established so as to evaluate the treatment effect of stent intervention, which may lay the scientific foundation for the structure design, mechanical analysis and clinical application of biodegradable stent.
Citation: ZHANG Hanbing, ZHANG Yu, CHEN Shiliang, CUI Xinyang, PENG Kun, QIAO Aike. Review of studies on the biomechanical modelling of the coupling effect between stent degradation and blood vessel remodeling. Journal of Biomedical Engineering, 2020, 37(6): 956-966. doi: 10.7507/1001-5515.202008007 Copy
1. | Boland E L, Shine R, Kelly N, et al. A review of material degradation modelling for the analysis and design of bioabsorbable stents. Ann Biomed Eng, 2016, 44(2): 341-356. |
2. | Hoffmann R, Mintz G S, Dussaillant G R, et al. Patterns and mechanisms of in-stent restenosis. A serial intravascular ultrasound study. Circulation, 1996, 94(6): 1247-1254. |
3. | Morlacchi S, Pennati G, Petrini L, et al. Influence of plaque calcifications on coronary stent fracture: a numerical fatigue Life analysis including cardiac wall movement. J Biomech, 2014, 47(4): 899-907. |
4. | Shen Z, Zhao M, Zhou X, et al. A numerical corrosion-fatigue model for biodegradable mg alloy stents. Acta Biomater, 2019, 97: 671-680. |
5. | Deshpande K B. Numerical modeling of micro-galvanic corrosion. Electrochim Acta, 2011, 56(4): 1737-1745. |
6. | Grogan J A, Leen S B, Mchugh P E. Optimizing the design of a bioabsorbable metal stent using computer simulation methods. Biomaterials, 2013, 34(33): 8049-8060. |
7. | Wang Pj, Ferralis N, Conway C, et al. Strain-induced accelerated asymmetric spatial degradation of polymeric vascular scaffolds. Proc Natl Acad Sci U S A, 2018, 115(11): 2640-2645. |
8. | Cui X, Peng K, Liu S, et al. A computational modelling of the mechanical performance of a bioabsorbable stent undergoing cyclic loading//International Conference on Stents - Materials, Mechanics and Manufacturing (ICS3M), London: European Struct Integr Soc, Tech Comm 14 Integr Biomed & Biol Mat, European Struct Integr Soc, Engn & Phys Sci Res Council, 2019, 15: 67-74. |
9. | Costa-Mattos H D. Bastos I N, gomes J A C P A simple model for slow strain rate and constant load corrosion tests of austenitic stainless steel in acid aqueous solution containing sodium chloride. Corrosion Sci, 2008, 50(10): 2858-2866. |
10. | Gastaldi D, Sassi V, Petrini L, et al. Continuum damage model for bioresorbable magnesium alloy devices - application to coronary stents. J Mech Behav Biomed Mater, 2011, 4(3): 352-365. |
11. | Wu W, Chen S, Gastaldi D, et al. Experimental data confirm numerical modeling of the degradation process of magnesium alloys stents. Acta Biomater, 2013, 9(10): 8730-8739. |
12. | Wu Wei, Gastaldi D, Yang K, et al. Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels. Materials Science and Engineering: B, 2011, 176(20): 1733-1740. |
13. | Grogan J A, Leen S B, Mchugh P E. A physical corrosion model for bioabsorbable metal stents. Acta Biomater, 2014, 10(5): 2313-2322. |
14. | Antunes R A, De Oliveira M C. Corrosion fatigue of biomedical metallic alloys: mechanisms and mitigation. Acta Biomater, 2012, 8(3): 937-962. |
15. | Bian D, Zhou W, Liu Y, et al. Fatigue behaviors of HP-Mg, Mg-Ca and Mg-Zn-Ca biodegradable metals in air and simulated body fluid. Acta Biomater, 2016, 41: 351-360. |
16. | Wang J, Giridharan V, Shanov V, et al. Flow-induced corrosion behavior of absorbable magnesium-based stents. Acta Biomater, 2014, 10(12): 5213-5223. |
17. | Grogan J A, O'brien B J, Leen S B, et al. A corrosion model for bioabsorbable metallic stents. Acta Biomater, 2011, 7(9): 3523-3533. |
18. | Debusschere N, Segers P, Dubruel P, et al. A computational framework to model degradation of biocorrodible metal stents using an implicit finite element solver. Ann Biomed Eng, 2016, 44(2): 382-390. |
19. | Galvin E, O'brien D, Cummins C, et al. A strain-mediated corrosion model for bioabsorbable metallic stents. Acta Biomater, 2017, 55: 505-517. |
20. | Cui X, Ren Q, Li Z, et al. Effect of plaque composition on biomechanical performance of a carotid stent: computational study. CMES-Comp Model Eng Sci, 2018, 116(3): 455-469. |
21. | 王聪霞, 贾珊. 冠状动脉支架内再狭窄发生机制的研究进展. 西安交通大学学报: 医学版, 2018, 39(3): 303-309. |
22. | 潘长江, 王进, 黄楠. 血管支架内再狭窄的研究进展. 中国生物医学工程学报, 2004, 23(2): 152-156. |
23. | Palombo F, Winlove C P, Edginton R S, et al. Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering. J R Soc Interface, 2014, 11(11): 20140739. |
24. | Fung Y C. Biomechanics: motion, stress, and growth. New York: Springer, 1990. |
25. | Humphrey J D. Wiley encyclopedia of biomedical engineering. America: John Wiley & Sons, 2006. |
26. | De S, Guilak F, Mofrad R M. Computational modeling in biomechanics. Dordrecht: Springer, 2010: 253-274. |
27. | Bourantas C V, Papafaklis M I, Kotsia A, et al. Effect of the endothelial shear stress patterns on neointimal proliferation following drug-eluting bioresorbable vascular scaffold implantation: an optical coherence tomography study. JACC Cardiovasc Interv, 2014, 7(3): 315-324. |
28. | Rodriguez E K, Hoger A, Mcculloch A D. Stress-dependent finite growth in soft elastic tissues. J Biomech, 1994, 27(4): 455-467. |
29. | Humphrey J D, Rajagopal K R. A constrained mixture model for growth and remodeling of soft tissues. Math Models Meth Appl Sci, 2002, 12(3): 407-430. |
30. | Cyron C J, Humphrey J D. Growth and remodeling of load-bearing biological soft tissues. Meccanica, 2017, 52(3): 645-664. |
31. | Ambrosi D, Ateshian G A, Arruda E M, et al. Perspectives on biological growth and remodeling. J Mech Phys Solids, 2011, 59(4): 863-883. |
32. | Menzel A, Kuhl E. Frontiers in growth and remodeling. Mech Res Commun, 2012, 42: 1-14. |
33. | Zahedmanesh H, Lally C. Determination of the influence of stent strut thickness using the finite element method: implications for vascular injury and in-stent restenosis. Med Biol Eng Comput, 2009, 47(4): 385-393. |
34. | Kroon M. Modeling of fibroblast-controlled strengthening and remodeling of uniaxially constrained collagen gels. J Biomech Eng, 2010, 132(11): 111008. |
35. | Pluijmert M, Kroon W, Delhaas T, et al. Adaptive reorientation of cardiac myofibers: the long-term effect of initial and boundary conditions. Mech Res Commun, 2012, 42: 60-67. |
36. | Erlich A, Moulton D, Goriely A. Are homeostatic states stable? Dynamical stability in morphoelasticity. Bull Math Biol, 2019, 81(8): 3219-3244. |
37. | Braeu F A, Aydin R C, Cyron C J. Anisotropic stiffness and tensional homeostasis induce a natural anisotropy of volumetric growth and remodeling in soft biological tissues. Biomech Model Mechanobiol, 2019, 18(2): 327-345. |
38. | Escuer J, Martínez M A, Mcginty S, et al. Mathematical modelling of the restenosis process after stent implantation. J R Soc Interface, 2019, 16(157): 20190313. |
39. | Rivas-Marchena D, Olmo A, Miguel J A, et al. Real-time electrical bioimpedance characterization of neointimal tissue for stent applications. Sensors, 2017, 17(8): 1737. |
40. | He R, Zhao L G, Silberschmidt V V, et al. Patient-specific modelling of stent overlap: lumen gain, tissue damage and in-stent restenosis. J Mech Behav Biomed Mater, 2020, 109: 103836. |
41. | He R, Zhao L G, Silberschmidt V V, et al. Finite element evaluation of artery damage in deployment of polymeric stent with pre- and post-dilation. Biomech Model Mechanobiol, 2020, 19(1): 47-60. |
42. | He R, Zhao L G, Silberschmidt V V, et al. Mechanistic evaluation of long-term in-stent restenosis based on models of tissue damage and growth. Biomech Model Mechanobiol, 2020, 19(5): 1425-1446. |
43. | Poon E W, Thondapu V, Hayat U, et al. Elevated blood viscosity and microrecirculation resulting from coronary stent malapposition. J Biomech Eng-Trans ASME, 2018, 140(5): 051006. |
44. | Ng J, Bourantas C V, Torii R, et al. Local hemodynamic forces after stenting: implications on restenosis and thrombosis. Arterioscler Thromb Vasc Biol, 2017, 37(12): 2231-2242. |
45. | Boland E L, Grogan J A, Mchugh P E. Computational modelling of magnesium stent mechanical performance in a remodelling artery: effects of multiple remodelling stimuli. Int J Numer Method Biomed Eng, 2019, 35(10): e3247. |
46. | Zahedmanesh H, Lally C. A multiscale mechanobiological modelling framework using agent-based models and finite element analysis: application to vascular tissue engineering. Biomech Model Mechanobiol, 2012, 11(3-4): 363-377. |
47. | Nolan D R, Lally C. An investigation of damage mechanisms in mechanobiological models of in-stent restenosis. J Comput Sci, 2018, 24: 132-142. |
48. | Boland E L, Grogan J A, Mchugh P E. Computational modeling of the mechanical performance of a magnesium stent undergoing uniform and pitting corrosion in a remodeling artery. Journal of Medical Devices, 2020, 11(2): 021013. |
49. | Cerrolaza M, Shefelbine S J, Garzón-Alvarado D. Numerical methods and advanced simulation in biomechanics and biological processes. Netherlands: Elsevier, 2018: 283-300. |
50. | Steinberg M S. Differential adhesion in morphogenesis: a modern view. Curr Opin Genet Dev, 2007, 17(4): 281-286. |
51. | van Liedekerke P, Palm M M, Jagiella N, et al. Simulating tissue mechanics with agent-based models: concepts, perspectives and some novel results. Comput Part Mech, 2015, 2(4): 401-444. |
52. | Jones G W, Chapman S J. Modeling growth in biological materials. SIAM Review, 2012, 54(1): 52-118. |
53. | Keshavarzian M, Meyer C A, Hayenga H N. Mechanobiological model of arterial growth and remodeling. Biomech Model Mechanobiol, 2018, 17(1): 87-101. |
54. | Boyle C J, Lennon A B, Prendergast P J. In silico prediction of the mechanobiological response of arterial tissue: application to angioplasty and stenting. J Biomech Eng, 2011, 133(8): 081001. |
55. | Garbey M, Casarin S, Berceli S A. Vascular adaptation: pattern formation and cross validation between an agent based model and a dynamical system. J Theor Biol, 2017, 429: 149-163. |
56. | Garbey M, Casarin S, Berceli S A. A versatile hybrid agent-based, particle and partial differential equations method to analyze vascular adaptation. Biomech Model Mechanobiol, 2019, 18(1): 29-44. |
57. | Thorne B C, Hayenga H N, Humphrey J D, et al. Toward a multi-scale computational model of arterial adaptation in hypertension: verification of a multi-cell agent based model. Front Physiol, 2011, 2: 20. |
58. | Evans D J, Lawford P V, Gunn J, et al. The application of multiscale modelling to the process of development and prevention of stenosis in a stented coronary artery. Philos Trans A Math Phys Eng Sci, 2008, 366(1879): 3343-3360. |
59. | Zahedmanesh H, Van O H, Lally C. A multi-scale mechanobiological model of in-stent restenosis: deciphering the role of matrix metalloproteinase and extracellular matrix changes. Comput Methods Biomech Biomed Engin, 2014, 17(8): 813-828. |
60. | Tahir H, Niculescu I, Bona-Casas C, et al. An in silico study on the role of smooth muscle cell migration in neointimal formation after coronary stenting. J R Soc Interface, 2015, 12(18): 20150358. |
61. | Nolan D R, Lally C. A Mechanobiological framework for the prediction of in-stent restenosis; insights into the role of load induced damage in restenotic growth//The Virtual Physiological Human Conference, Amsterdam: Elsevier, 2016. |
62. | Boyle C J, Lennon A B, Prendergast P J. Application of a mechanobiological simulation technique to stents used clinically. J Biomech, 2013, 46(5): 918-924. |
63. | Marino M, Pontrelli G, Vairo G, et al. A chemo-mechano-biological formulation for the effects of biochemical alterations on arterial mechanics: the role of molecular transport and multiscale tissue remodelling. J R Soc Interface, 2017, 14(136): 20170615. |
64. | Fereidoonnezhad B, Naghdabadi R, Sohrabpour S, et al. A mechanobiological model for damage-induced growth in arterial tissue with application to in-stent restenosis. J Mech Phys Solids, 2017, 101: 311-327. |
65. | Amatruda C M, Bona C C, Keller B K, et al. From histology and imaging data to models for in-stent restenosis. Int J Artif Organs, 2014, 37(10): 786-800. |
66. | Zun P S, Anikina T, Svitenkov A, et al. A comparison of fully-coupled 3D in-stent restenosis simulations to in-vivo data. Front Physiol, 2017, 8: 284. |
67. | Zun P S, Narracott A J, Chiastra C, et al. Location-Specific comparison between a 3D in-stent restenosis model and micro-CT and histology data from porcine in vivo experiments. Cardiovasc Eng Technol, 2019, 10(4): 568-582. |
68. | Cheng J, Zhang L T. Simulation of vessel tissue remodeling with residual stress: an application to in-stent restenosis. J Mech Phys Solids, 2019, 10(1): 11-27. |
69. | Nikishova A, Veen L, Zun P, et al. Uncertainty quantification of a multiscale model for in-stent restenosis. Cardiovasc Eng Technol, 2018, 9(4): 761-774. |
70. | Nikishova A, Veen L, Zun P, et al. Semi-intrusive multiscale metamodelling uncertainty quantification with application to a model of in-stent restenosis. Philos Trans A Math Phys Eng Sci, 2019, 377(2142): 20180154. |
71. | Satha G, Lindström S B, Klarbring A. A goal function approach to remodeling of arteries uncovers mechanisms for growth instability. Biomech Model Mechanobiol, 2014, 13(6): 1243-1259. |
72. | Cyron C J, Humphrey J D. Vascular homeostasis and the concept of mechanobiological stability. Int J Eng Sci, 2014, 85: 203-223. |
73. | Wu J, Shadden S C. Stability analysis of a continuum-based constrained mixture model for vascular growth and remodeling. Biomech Model Mechanobiol, 2016, 15(6): 1669-1684. |
74. | Li S, Lei L, Hu Y, et al. A fully coupled framework for in silico investigation of in-stent restenosis. Comput Methods Biomech Biomed Engin, 2019, 22(2): 217-228. |
75. | Latorre M, Humphrey J D. Mechanobiological stability of biological soft tissues. J Mech Phys Solids, 2019, 125: 298-325. |
76. | Welt F G, Rogers C. Inflammation and restenosis in the stent era. Arterioscler Thromb Vasc Biol, 2002, 22(11): 1769-1776. |
77. | Costa M A, Simon D I. Molecular basis of restenosis and drug-eluting stents. Circulation, 2005, 111(17): 2257-2273. |
78. | 郑玉峰, 杨宏韬. 血管支架用可降解金属研究进展. 金属学报, 2017, 53(10): 1227-1237. |
79. | Peng K, Cui X, Qiao A, et al. Mechanical analysis of a novel biodegradable zinc alloy stent based on a degradation model. Biomed Eng Online, 2019, 18(1): 39. |
80. | 彭坤, 乔爱科. 新型可降解锌合金支架的结构设计及其力学性能分析. 医用生物力学, 2019, 34(2): 160-165. |
81. | 顾兴中, 程洁, 李俐军, 等. 血管支架耦合系统血流动力学数值模拟与实验研究. 东南大学学报: 自然科学版, 2012, 42(6): 1089-1093. |
82. | 席亚东, 黄玉华, 杜若林, 等. 血管内支架植入后的内皮损伤及其修复策略. 生物医学工程学杂志, 2018, 35(2): 307-313. |
83. | Hu T, Yang C, Lin S, et al. Biodegradable stents for coronary artery disease treatment: recent advances and future perspectives. Mater Sci Eng C Mater Biol Appl, 2018, 91: 163-178. |
84. | Liu X, Wang M, Zhang N, et al. Effects of endothelium, stent design and deployment on the nitric oxide transport in stented artery: a potential role in stent restenosis and thrombosis. Med Biol Eng Comput, 2015, 53(5): 427-439. |
85. | Ma J, Zhao N, Zhu D. Endothelial cellular responses to biodegradable metal zinc. ACS Biomater Sci Eng, 2015, 1(11): 1174-1182. |
86. | Guillory R 2, Sikora-Jasinska M, Drelich J W, et al. In vitro corrosion and in vivo response to zinc implants with electropolished and anodized surfaces. ACS Appl Mater Interfaces, 2019, 11(22): 19884-19893. |
87. | Holzapfel G A, Sommer G, Gasser C T, et al. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Physiol Heart Circ Physiol, 2005, 289(5): H2048-H2058. |
88. | Chen C, Chen J, Wu W, et al. In vivo and in vitro evaluation of a biodegradable magnesium vascular stent designed by shape optimization strategy. Biomaterials, 2019, 221: 119414. |
89. | Holzapfel G A, Ogden R W. Mechanics of biological tissue. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006: 29-46. |
90. | Yang K, Zhou C, Fan H, et al. Bio-Functional design, application and trends in metallic biomaterials. Int J Mol Sci, 2017, 19(1): 24. |
91. | Humphrey J D. Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem Biophys, 2008, 50(2): 53-78. |
92. | Cyron C J, Wilson J S, Humphrey J D. Mechanobiological stability: a new paradigm to understand the enlargement of aneurysms? J R Soc Interface, 2014, 11(10): 20140680. |
93. | Sacco R, Causin P, Lelli C, et al. A poroelastic mixture model of mechanobiological processes in biomass growth: theory and application to tissue engineering. Meccanica, 2017, 52(14): 3273-3297. |
94. | Aparício P, Thompson M S, Watton P N. A novel chemo-mechano-biological model of arterial tissue growth and remodelling. J Biomech, 2016, 49(12): 2321-2330. |
- 1. Boland E L, Shine R, Kelly N, et al. A review of material degradation modelling for the analysis and design of bioabsorbable stents. Ann Biomed Eng, 2016, 44(2): 341-356.
- 2. Hoffmann R, Mintz G S, Dussaillant G R, et al. Patterns and mechanisms of in-stent restenosis. A serial intravascular ultrasound study. Circulation, 1996, 94(6): 1247-1254.
- 3. Morlacchi S, Pennati G, Petrini L, et al. Influence of plaque calcifications on coronary stent fracture: a numerical fatigue Life analysis including cardiac wall movement. J Biomech, 2014, 47(4): 899-907.
- 4. Shen Z, Zhao M, Zhou X, et al. A numerical corrosion-fatigue model for biodegradable mg alloy stents. Acta Biomater, 2019, 97: 671-680.
- 5. Deshpande K B. Numerical modeling of micro-galvanic corrosion. Electrochim Acta, 2011, 56(4): 1737-1745.
- 6. Grogan J A, Leen S B, Mchugh P E. Optimizing the design of a bioabsorbable metal stent using computer simulation methods. Biomaterials, 2013, 34(33): 8049-8060.
- 7. Wang Pj, Ferralis N, Conway C, et al. Strain-induced accelerated asymmetric spatial degradation of polymeric vascular scaffolds. Proc Natl Acad Sci U S A, 2018, 115(11): 2640-2645.
- 8. Cui X, Peng K, Liu S, et al. A computational modelling of the mechanical performance of a bioabsorbable stent undergoing cyclic loading//International Conference on Stents - Materials, Mechanics and Manufacturing (ICS3M), London: European Struct Integr Soc, Tech Comm 14 Integr Biomed & Biol Mat, European Struct Integr Soc, Engn & Phys Sci Res Council, 2019, 15: 67-74.
- 9. Costa-Mattos H D. Bastos I N, gomes J A C P A simple model for slow strain rate and constant load corrosion tests of austenitic stainless steel in acid aqueous solution containing sodium chloride. Corrosion Sci, 2008, 50(10): 2858-2866.
- 10. Gastaldi D, Sassi V, Petrini L, et al. Continuum damage model for bioresorbable magnesium alloy devices - application to coronary stents. J Mech Behav Biomed Mater, 2011, 4(3): 352-365.
- 11. Wu W, Chen S, Gastaldi D, et al. Experimental data confirm numerical modeling of the degradation process of magnesium alloys stents. Acta Biomater, 2013, 9(10): 8730-8739.
- 12. Wu Wei, Gastaldi D, Yang K, et al. Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels. Materials Science and Engineering: B, 2011, 176(20): 1733-1740.
- 13. Grogan J A, Leen S B, Mchugh P E. A physical corrosion model for bioabsorbable metal stents. Acta Biomater, 2014, 10(5): 2313-2322.
- 14. Antunes R A, De Oliveira M C. Corrosion fatigue of biomedical metallic alloys: mechanisms and mitigation. Acta Biomater, 2012, 8(3): 937-962.
- 15. Bian D, Zhou W, Liu Y, et al. Fatigue behaviors of HP-Mg, Mg-Ca and Mg-Zn-Ca biodegradable metals in air and simulated body fluid. Acta Biomater, 2016, 41: 351-360.
- 16. Wang J, Giridharan V, Shanov V, et al. Flow-induced corrosion behavior of absorbable magnesium-based stents. Acta Biomater, 2014, 10(12): 5213-5223.
- 17. Grogan J A, O'brien B J, Leen S B, et al. A corrosion model for bioabsorbable metallic stents. Acta Biomater, 2011, 7(9): 3523-3533.
- 18. Debusschere N, Segers P, Dubruel P, et al. A computational framework to model degradation of biocorrodible metal stents using an implicit finite element solver. Ann Biomed Eng, 2016, 44(2): 382-390.
- 19. Galvin E, O'brien D, Cummins C, et al. A strain-mediated corrosion model for bioabsorbable metallic stents. Acta Biomater, 2017, 55: 505-517.
- 20. Cui X, Ren Q, Li Z, et al. Effect of plaque composition on biomechanical performance of a carotid stent: computational study. CMES-Comp Model Eng Sci, 2018, 116(3): 455-469.
- 21. 王聪霞, 贾珊. 冠状动脉支架内再狭窄发生机制的研究进展. 西安交通大学学报: 医学版, 2018, 39(3): 303-309.
- 22. 潘长江, 王进, 黄楠. 血管支架内再狭窄的研究进展. 中国生物医学工程学报, 2004, 23(2): 152-156.
- 23. Palombo F, Winlove C P, Edginton R S, et al. Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering. J R Soc Interface, 2014, 11(11): 20140739.
- 24. Fung Y C. Biomechanics: motion, stress, and growth. New York: Springer, 1990.
- 25. Humphrey J D. Wiley encyclopedia of biomedical engineering. America: John Wiley & Sons, 2006.
- 26. De S, Guilak F, Mofrad R M. Computational modeling in biomechanics. Dordrecht: Springer, 2010: 253-274.
- 27. Bourantas C V, Papafaklis M I, Kotsia A, et al. Effect of the endothelial shear stress patterns on neointimal proliferation following drug-eluting bioresorbable vascular scaffold implantation: an optical coherence tomography study. JACC Cardiovasc Interv, 2014, 7(3): 315-324.
- 28. Rodriguez E K, Hoger A, Mcculloch A D. Stress-dependent finite growth in soft elastic tissues. J Biomech, 1994, 27(4): 455-467.
- 29. Humphrey J D, Rajagopal K R. A constrained mixture model for growth and remodeling of soft tissues. Math Models Meth Appl Sci, 2002, 12(3): 407-430.
- 30. Cyron C J, Humphrey J D. Growth and remodeling of load-bearing biological soft tissues. Meccanica, 2017, 52(3): 645-664.
- 31. Ambrosi D, Ateshian G A, Arruda E M, et al. Perspectives on biological growth and remodeling. J Mech Phys Solids, 2011, 59(4): 863-883.
- 32. Menzel A, Kuhl E. Frontiers in growth and remodeling. Mech Res Commun, 2012, 42: 1-14.
- 33. Zahedmanesh H, Lally C. Determination of the influence of stent strut thickness using the finite element method: implications for vascular injury and in-stent restenosis. Med Biol Eng Comput, 2009, 47(4): 385-393.
- 34. Kroon M. Modeling of fibroblast-controlled strengthening and remodeling of uniaxially constrained collagen gels. J Biomech Eng, 2010, 132(11): 111008.
- 35. Pluijmert M, Kroon W, Delhaas T, et al. Adaptive reorientation of cardiac myofibers: the long-term effect of initial and boundary conditions. Mech Res Commun, 2012, 42: 60-67.
- 36. Erlich A, Moulton D, Goriely A. Are homeostatic states stable? Dynamical stability in morphoelasticity. Bull Math Biol, 2019, 81(8): 3219-3244.
- 37. Braeu F A, Aydin R C, Cyron C J. Anisotropic stiffness and tensional homeostasis induce a natural anisotropy of volumetric growth and remodeling in soft biological tissues. Biomech Model Mechanobiol, 2019, 18(2): 327-345.
- 38. Escuer J, Martínez M A, Mcginty S, et al. Mathematical modelling of the restenosis process after stent implantation. J R Soc Interface, 2019, 16(157): 20190313.
- 39. Rivas-Marchena D, Olmo A, Miguel J A, et al. Real-time electrical bioimpedance characterization of neointimal tissue for stent applications. Sensors, 2017, 17(8): 1737.
- 40. He R, Zhao L G, Silberschmidt V V, et al. Patient-specific modelling of stent overlap: lumen gain, tissue damage and in-stent restenosis. J Mech Behav Biomed Mater, 2020, 109: 103836.
- 41. He R, Zhao L G, Silberschmidt V V, et al. Finite element evaluation of artery damage in deployment of polymeric stent with pre- and post-dilation. Biomech Model Mechanobiol, 2020, 19(1): 47-60.
- 42. He R, Zhao L G, Silberschmidt V V, et al. Mechanistic evaluation of long-term in-stent restenosis based on models of tissue damage and growth. Biomech Model Mechanobiol, 2020, 19(5): 1425-1446.
- 43. Poon E W, Thondapu V, Hayat U, et al. Elevated blood viscosity and microrecirculation resulting from coronary stent malapposition. J Biomech Eng-Trans ASME, 2018, 140(5): 051006.
- 44. Ng J, Bourantas C V, Torii R, et al. Local hemodynamic forces after stenting: implications on restenosis and thrombosis. Arterioscler Thromb Vasc Biol, 2017, 37(12): 2231-2242.
- 45. Boland E L, Grogan J A, Mchugh P E. Computational modelling of magnesium stent mechanical performance in a remodelling artery: effects of multiple remodelling stimuli. Int J Numer Method Biomed Eng, 2019, 35(10): e3247.
- 46. Zahedmanesh H, Lally C. A multiscale mechanobiological modelling framework using agent-based models and finite element analysis: application to vascular tissue engineering. Biomech Model Mechanobiol, 2012, 11(3-4): 363-377.
- 47. Nolan D R, Lally C. An investigation of damage mechanisms in mechanobiological models of in-stent restenosis. J Comput Sci, 2018, 24: 132-142.
- 48. Boland E L, Grogan J A, Mchugh P E. Computational modeling of the mechanical performance of a magnesium stent undergoing uniform and pitting corrosion in a remodeling artery. Journal of Medical Devices, 2020, 11(2): 021013.
- 49. Cerrolaza M, Shefelbine S J, Garzón-Alvarado D. Numerical methods and advanced simulation in biomechanics and biological processes. Netherlands: Elsevier, 2018: 283-300.
- 50. Steinberg M S. Differential adhesion in morphogenesis: a modern view. Curr Opin Genet Dev, 2007, 17(4): 281-286.
- 51. van Liedekerke P, Palm M M, Jagiella N, et al. Simulating tissue mechanics with agent-based models: concepts, perspectives and some novel results. Comput Part Mech, 2015, 2(4): 401-444.
- 52. Jones G W, Chapman S J. Modeling growth in biological materials. SIAM Review, 2012, 54(1): 52-118.
- 53. Keshavarzian M, Meyer C A, Hayenga H N. Mechanobiological model of arterial growth and remodeling. Biomech Model Mechanobiol, 2018, 17(1): 87-101.
- 54. Boyle C J, Lennon A B, Prendergast P J. In silico prediction of the mechanobiological response of arterial tissue: application to angioplasty and stenting. J Biomech Eng, 2011, 133(8): 081001.
- 55. Garbey M, Casarin S, Berceli S A. Vascular adaptation: pattern formation and cross validation between an agent based model and a dynamical system. J Theor Biol, 2017, 429: 149-163.
- 56. Garbey M, Casarin S, Berceli S A. A versatile hybrid agent-based, particle and partial differential equations method to analyze vascular adaptation. Biomech Model Mechanobiol, 2019, 18(1): 29-44.
- 57. Thorne B C, Hayenga H N, Humphrey J D, et al. Toward a multi-scale computational model of arterial adaptation in hypertension: verification of a multi-cell agent based model. Front Physiol, 2011, 2: 20.
- 58. Evans D J, Lawford P V, Gunn J, et al. The application of multiscale modelling to the process of development and prevention of stenosis in a stented coronary artery. Philos Trans A Math Phys Eng Sci, 2008, 366(1879): 3343-3360.
- 59. Zahedmanesh H, Van O H, Lally C. A multi-scale mechanobiological model of in-stent restenosis: deciphering the role of matrix metalloproteinase and extracellular matrix changes. Comput Methods Biomech Biomed Engin, 2014, 17(8): 813-828.
- 60. Tahir H, Niculescu I, Bona-Casas C, et al. An in silico study on the role of smooth muscle cell migration in neointimal formation after coronary stenting. J R Soc Interface, 2015, 12(18): 20150358.
- 61. Nolan D R, Lally C. A Mechanobiological framework for the prediction of in-stent restenosis; insights into the role of load induced damage in restenotic growth//The Virtual Physiological Human Conference, Amsterdam: Elsevier, 2016.
- 62. Boyle C J, Lennon A B, Prendergast P J. Application of a mechanobiological simulation technique to stents used clinically. J Biomech, 2013, 46(5): 918-924.
- 63. Marino M, Pontrelli G, Vairo G, et al. A chemo-mechano-biological formulation for the effects of biochemical alterations on arterial mechanics: the role of molecular transport and multiscale tissue remodelling. J R Soc Interface, 2017, 14(136): 20170615.
- 64. Fereidoonnezhad B, Naghdabadi R, Sohrabpour S, et al. A mechanobiological model for damage-induced growth in arterial tissue with application to in-stent restenosis. J Mech Phys Solids, 2017, 101: 311-327.
- 65. Amatruda C M, Bona C C, Keller B K, et al. From histology and imaging data to models for in-stent restenosis. Int J Artif Organs, 2014, 37(10): 786-800.
- 66. Zun P S, Anikina T, Svitenkov A, et al. A comparison of fully-coupled 3D in-stent restenosis simulations to in-vivo data. Front Physiol, 2017, 8: 284.
- 67. Zun P S, Narracott A J, Chiastra C, et al. Location-Specific comparison between a 3D in-stent restenosis model and micro-CT and histology data from porcine in vivo experiments. Cardiovasc Eng Technol, 2019, 10(4): 568-582.
- 68. Cheng J, Zhang L T. Simulation of vessel tissue remodeling with residual stress: an application to in-stent restenosis. J Mech Phys Solids, 2019, 10(1): 11-27.
- 69. Nikishova A, Veen L, Zun P, et al. Uncertainty quantification of a multiscale model for in-stent restenosis. Cardiovasc Eng Technol, 2018, 9(4): 761-774.
- 70. Nikishova A, Veen L, Zun P, et al. Semi-intrusive multiscale metamodelling uncertainty quantification with application to a model of in-stent restenosis. Philos Trans A Math Phys Eng Sci, 2019, 377(2142): 20180154.
- 71. Satha G, Lindström S B, Klarbring A. A goal function approach to remodeling of arteries uncovers mechanisms for growth instability. Biomech Model Mechanobiol, 2014, 13(6): 1243-1259.
- 72. Cyron C J, Humphrey J D. Vascular homeostasis and the concept of mechanobiological stability. Int J Eng Sci, 2014, 85: 203-223.
- 73. Wu J, Shadden S C. Stability analysis of a continuum-based constrained mixture model for vascular growth and remodeling. Biomech Model Mechanobiol, 2016, 15(6): 1669-1684.
- 74. Li S, Lei L, Hu Y, et al. A fully coupled framework for in silico investigation of in-stent restenosis. Comput Methods Biomech Biomed Engin, 2019, 22(2): 217-228.
- 75. Latorre M, Humphrey J D. Mechanobiological stability of biological soft tissues. J Mech Phys Solids, 2019, 125: 298-325.
- 76. Welt F G, Rogers C. Inflammation and restenosis in the stent era. Arterioscler Thromb Vasc Biol, 2002, 22(11): 1769-1776.
- 77. Costa M A, Simon D I. Molecular basis of restenosis and drug-eluting stents. Circulation, 2005, 111(17): 2257-2273.
- 78. 郑玉峰, 杨宏韬. 血管支架用可降解金属研究进展. 金属学报, 2017, 53(10): 1227-1237.
- 79. Peng K, Cui X, Qiao A, et al. Mechanical analysis of a novel biodegradable zinc alloy stent based on a degradation model. Biomed Eng Online, 2019, 18(1): 39.
- 80. 彭坤, 乔爱科. 新型可降解锌合金支架的结构设计及其力学性能分析. 医用生物力学, 2019, 34(2): 160-165.
- 81. 顾兴中, 程洁, 李俐军, 等. 血管支架耦合系统血流动力学数值模拟与实验研究. 东南大学学报: 自然科学版, 2012, 42(6): 1089-1093.
- 82. 席亚东, 黄玉华, 杜若林, 等. 血管内支架植入后的内皮损伤及其修复策略. 生物医学工程学杂志, 2018, 35(2): 307-313.
- 83. Hu T, Yang C, Lin S, et al. Biodegradable stents for coronary artery disease treatment: recent advances and future perspectives. Mater Sci Eng C Mater Biol Appl, 2018, 91: 163-178.
- 84. Liu X, Wang M, Zhang N, et al. Effects of endothelium, stent design and deployment on the nitric oxide transport in stented artery: a potential role in stent restenosis and thrombosis. Med Biol Eng Comput, 2015, 53(5): 427-439.
- 85. Ma J, Zhao N, Zhu D. Endothelial cellular responses to biodegradable metal zinc. ACS Biomater Sci Eng, 2015, 1(11): 1174-1182.
- 86. Guillory R 2, Sikora-Jasinska M, Drelich J W, et al. In vitro corrosion and in vivo response to zinc implants with electropolished and anodized surfaces. ACS Appl Mater Interfaces, 2019, 11(22): 19884-19893.
- 87. Holzapfel G A, Sommer G, Gasser C T, et al. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Physiol Heart Circ Physiol, 2005, 289(5): H2048-H2058.
- 88. Chen C, Chen J, Wu W, et al. In vivo and in vitro evaluation of a biodegradable magnesium vascular stent designed by shape optimization strategy. Biomaterials, 2019, 221: 119414.
- 89. Holzapfel G A, Ogden R W. Mechanics of biological tissue. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006: 29-46.
- 90. Yang K, Zhou C, Fan H, et al. Bio-Functional design, application and trends in metallic biomaterials. Int J Mol Sci, 2017, 19(1): 24.
- 91. Humphrey J D. Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem Biophys, 2008, 50(2): 53-78.
- 92. Cyron C J, Wilson J S, Humphrey J D. Mechanobiological stability: a new paradigm to understand the enlargement of aneurysms? J R Soc Interface, 2014, 11(10): 20140680.
- 93. Sacco R, Causin P, Lelli C, et al. A poroelastic mixture model of mechanobiological processes in biomass growth: theory and application to tissue engineering. Meccanica, 2017, 52(14): 3273-3297.
- 94. Aparício P, Thompson M S, Watton P N. A novel chemo-mechano-biological model of arterial tissue growth and remodelling. J Biomech, 2016, 49(12): 2321-2330.