1. |
胡盛寿, 高润霖, 刘力生, 等. 《中国心血管病报告 2018》概要. 中国循环杂志, 2019, 034(3): 209-220.
|
2. |
Brie D, Penson P, Serban M C, et al. Bioresorbable scaffold - a magic bullet for the treatment of coronary artery disease?. Int J Cardiol, 2016, 215: 47-59.
|
3. |
Stack R S, Califf R M, Phillips H R, et al. Interventional cardiac catheterization at Duke Medical Center. Am J Cardiol, 1988, 62(2): 3F-24F.
|
4. |
Qiu T Y, Song M, Zhao L G. A computational study of crimping and expansion of bioresorbable polymeric stents. Mech Time Depend Mater, 2018, 22(2): 273-290.
|
5. |
潘兴纳, 李亚雄, 蒋立虹. 组织工程血管支架材料的研究与进展. 中国组织工程研究, 2016, 20(34): 5149-5154.
|
6. |
Murphy B P, Savage P, Mchugh P E, et al. The stress-strain behavior of coronary stent struts is size dependent. Ann Biomed Eng, 2003, 31(6): 686-691.
|
7. |
Pauck R G, Reddy B D. Computational analysis of the radial mechanical performance of PLLA coronary artery stents. Med Eng Phys, 2015, 37(1): 7-12.
|
8. |
Ruef J, Hofmann M, Haase J. Endovascular interventions in iliac and infrainguinal occlusive artery disease. J Interv Cardiol, 2004, 17(6): 427-435.
|
9. |
Soares J S, Moore J J. Biomechanical challenges to polymeric biodegradable stents. Ann Biomed Eng, 2016, 44(2): 560-579.
|
10. |
魏云波, 赵丹阳, 王敏杰, 等. 高径向支撑性可生物降解聚合物血管支架结构设计与力学性能分析. 中国机械工程, 2020, 31(9): 1098-1107, 1130.
|
11. |
Foin N, Lee R D, Torii R, et al. Impact of stent strut design in metallic stents and biodegradable scaffolds. Int J Cardiol, 2014, 177(3): 800-808.
|
12. |
劳永华, 支晓兴, 林泽枫, 等. 基于生物力学性能的血管内支架弧梁单元结构优化设计. 中国组织工程研究与临床康复, 2010, 14(30): 5581-5585.
|
13. |
Chen C, Xiong Y, Jiang W, et al. Experimental and numerical simulation of biodegradable stents with different strut geometries. Cardiovasc Eng Technol, 2020, 11(1): 36-46.
|
14. |
Bedoya J, Meyer C A, Timmins L H, et al. Effects of stent design parameters on normal artery wall mechanics. J Biomech Eng, 2006, 128(5): 757-765.
|
15. |
Chen Yu, Jiang Wentao, Chen Xi, et al. Numerical simulation on the effects of drug-eluting stents with different links on hemodynamics and drug concentration distribution. J Mech Med Biol, 2013, 13(04): 1350070.
|
16. |
Chen Y, Xiong Y, Jiang W, et al. Numerical study on the effects of the number and geometries of drug-eluting stent links on the drug concentration. J Mech Med Biol, 2014, 14(05): 1450077.
|
17. |
King S B, Yeung A C. Interventional cardiology, New York: McGraw-Hill Medical, 2007.
|
18. |
Ormiston J A, Webster M W, Armstrong G. First-in-human implantation of a fully bioabsorbable drug-eluting stent: the BVS poly-L-lactic acid everolimus-eluting coronary stent. Catheter Cardiovasc Interv, 2007, 69(1): 128-131.
|
19. |
Foin N, Gutiérrez-Chico J L, Nakatani S, et al. Incomplete stent apposition causes high shear flow disturbances and delay in neointimal coverage as a function of strut to wall detachment distance: implications for the management of incomplete stent apposition. Circ Cardiovasc Interv, 2014, 7(2): 180-189.
|
20. |
Kastrati A, Schömig A, Dirschinger J, et al. Increased risk of restenosis after placement of gold-coated stents: results of a randomized trial comparing gold-coated with uncoated steel stents in patients with coronary artery disease. Circulation, 2000, 101(21): 2478-2483.
|
21. |
Pache J, Kastrati A, Mehilli J, et al. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. J Am Coll Cardiol, 2003, 41(8): 1283-1288.
|
22. |
Guan Ying, Lin Jing, Dong Zhihui, et al. Comparative study of the effect of structural parameters on the flexibility of endovascular stent grafts. Advances in Materials Science and Engineering, 2018, 2018: 3046576.
|
23. |
Wu W, Yang D Z, Qi M, et al. An FEA method to study flexibility of expanded coronary stents. J Mater Process Technol, 2007, 184(1): 447-450.
|
24. |
Gyöngyösi M, Yang P, Khorsand A, et al. Longitudinal straightening effect of stents is an additional predictor for major adverse cardiac events. J Am Coll Cardiol, 2000, 35(6): 1580-1589.
|
25. |
Syaifudin A, Takeda R, Sasaki K, et al. Effect of asymmetric geometry on the flexibility of stent. J Mech Eng Sci, 2017, 1(1): 1-7.
|
26. |
Chen C, Xiong Y, Li Z, et al. Flexibility of biodegradable polymer stents with different strut geometries. Materials (Basel), 2020, 13(15): 3332.
|
27. |
Bobel A C, Petisco S, Sarasua J R, et al. Computational bench testing to evaluate the short-term mechanical performance of a polymeric stent. Cardiovasc Eng Technol, 2015, 6(4): 519-532.
|
28. |
Bailey S R. DES design: theoretical advantages and disadvantages of stent strut materials, design, thickness, and surface characteristics. J Interv Cardiol, 2010, 22(s1): 3-17.
|
29. |
Lanzer P, Schmidt W. Instrumentation for coronary artery interventions. In: Lanzer P, PanVascular medicine. Berlin, Heidelberg: Springer Verlag, 2015: 1979–2027.
|
30. |
Pierce D S, Rosero E B, Modrall J G, et al. Open-cell versus closed-cell stent design differences in blood flow velocities after carotid stenting. J Vasc Surg, 2009, 49(3): 602-606.
|
31. |
Di Mario C, Karvouni E. The bigger, the better: true also for in-stent restenosis?. Eur Heart J, 2000, 21(9): 710-711.
|
32. |
Grogan J A, Leen S B, Mchugh P E. Comparing coronary stent material performance on a common geometric platform through simulated bench testing. J Mech Behav Biomed Mater, 2012, 12: 129-138.
|
33. |
Luo Q, Liu X, Li Z, et al. Degradation model of bioabsorbable cardiovascular stents. PLoS One, 2014, 9(11): e110278.
|
34. |
智友海, 史向平. NiTi 心血管支架的疲劳断裂性能分析. 医用生物力学, 2011, 26(1): 1-6.
|
35. |
Schiavone A, Abunassar C, Hossainy S, et al. Computational analysis of mechanical stress-strain interaction of a bioresorbable scaffold with blood vessel. J Biomech, 2016, 49(13): 2677-2683.
|
36. |
Chen Y, Xiong Y, Jiang W, et al. Numerical simulation on the effects of drug-eluting stents with different bending angles on hemodynamics and drug distribution. Med Biol Eng Comput, 2016, 54(12): 1859-1870.
|
37. |
Li Zhongyou, Yan Fei, Yang Jingru, et al. Hemodynamics and oxygen transport through suprarenal abdominal aortic aneurysm treated with multilayer stent numerical study. Ann Vasc Surg, 2019, 54: 290-297.
|
38. |
Adlakha S, Sheikh M, Bruhl S, et al. Coronary stent fracture: a cause of cardiac chest pain?. Int J Cardiol, 2010, 141(2): e23-e25.
|
39. |
王世堉, 陈利民, 王薇利. 聚合物材料疲劳研究方法及进展. 塑料, 2009, 38(1): 25-28.
|
40. |
Sweeney C A, Mchugh P E, Mcgarry J P, et al. Micromechanical methodology for fatigue in cardiovascular stents. Int J Fatigue, 2012, 44: 202-216.
|
41. |
Food and Drug Administration. Non-clinical engineering tests and recommended labeling for intravascular stents and associated delivery systems: guidance for industry and FDA staff. US Department of Health and Human Services; Food and Drug Administration, Centre for Devices and Radiological, Health, 2010.
|
42. |
Bowen P K, Guillory I R, Shearier E R, et al. Metallic Zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents. Mater Sci Eng C Mater Biol Appl, 2015, 56: 467-472.
|