1. |
Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2019, 394(10204): 1145-1158.
|
2. |
Wang W, Jiang B, Sun H, et al. Prevalence, incidence, and mortality of stroke in China. Circulation, 2017, 135(8): 759-771.
|
3. |
Henkes H, Weber W. The past, present and future of endovascular aneurysm treatment. Clin Neuroradiol, 2015, 25(S2): 317-324.
|
4. |
Hasan D M, Nadareyshvili A I, Hoppe A L, et al. Cerebral aneurysm sac growth as the etiology of recurrence after successful coil embolization. Stroke, 2012, 43(3): 866-868.
|
5. |
Campi A, Ramzi N, Molyneux A J, et al. Retreatment of ruptured cerebral aneurysms in patients randomized by coiling or clipping in the International Subarachnoid Aneurysm Trial (ISAT). Stroke, 2007, 38(5): 1538-1544.
|
6. |
Bhogal P, Ganslandt O, Bazner H, et al. The fate of side branches covered by flow diverters–results from 140 patients. World Neurosurg, 2017, 103: 789-798.
|
7. |
Bavaria J E, Appoo J J, Makaroun M S, et al. Endovascular stent grafting versus open surgical repair of descending thoracic aortic aneurysms in low-risk patients: A multicenter comparative trial. J Thorac Cardiovasc Surg, 2007, 133(2): 369-377.
|
8. |
Nienaber C A, Fattori R, Lund G, et al. Nonsurgical reconstruction of thoracic aortic dissection by stent-graft placement. New Engl J Med, 1999, 340(20): 1539-1545.
|
9. |
Gleason T. Endoleaks after endovascular aortic stent-grafting: Impact, diagnosis, and management. Semin Thorac Cardiovasc Surg, 2009, 21(4): 363-372.
|
10. |
Fanelli F, Cannavale A, O’Sullivan G J, et al. Endovascular repair of acute and chronic aortic type B dissections: Main factors affecting aortic remodeling and clinical outcome. JACC Cardiovasc Interv, 2016, 9(2): 183-191.
|
11. |
Lasheras J C. The biomechanics of arterial aneurysms. Ann Rev Fluid Mech, 2007, 39: 293-319.
|
12. |
Paliwal N, Yu H, Xu J, et al. Virtual stenting workflow with vessel-specific initialization and adaptive expansion for neurovascular stents and flow diverters. Comput Methods Biomech Biomed Engin, 2016, 19(13): 1423-1431.
|
13. |
Peach T W, Ngoepe M, Spranger K, et al. Personalizing flow-diverter intervention for cerebral aneurysms: from computational hemodynamics to biochemical modeling. Int J Numer Method Biomed Eng, 2014, 30(11): 1387-1407.
|
14. |
Zhang Y, Huang Q, Fang Y, et al. A novel flow diverter (Tubridge) for the treatment of recurrent aneurysms: A single-center experience. Korean J Radiol, 2017, 18(5): 852.
|
15. |
Lubicz B, Collignon L, Raphaeli G, et al. Pipeline flow-diverter stent for endovascular treatment of intracranial aneurysms: Preliminary experience in 20 patients with 27 aneurysms. World Neurosurg, 2011, 76(1-2): 114-119.
|
16. |
Leonardi M, Cirillo L, Toni F, et al. Treatment of intracranial aneurysms using flow-diverting silk stents (BALT): A single centre experience. Interv Neuroradiol, 2011, 17(3): 306-315.
|
17. |
郑清丽. 颅内动脉瘤编织支架力学行为有限元分析. 太原: 太原理工大学, 2015.
|
18. |
Kim J H, Kang T J, Yu W. Mechanical modeling of self-expandable stent fabricated using braiding technology. J Biomech, 2008, 41(15): 3202-3212.
|
19. |
Conti M. Finite element analysis of self-expanding braided wire stents. Ghent: Ghent University, 2010.
|
20. |
Fu W, Xia Q. Interaction between flow diverter and parent artery of intracranial aneurysm: A computational study. Appl Bionics Biomech, 2017, 2017: 1-9.
|
21. |
Damiano R J, Ma D, Xiang J, et al. Finite element modeling of endovascular coiling and flow diversion enables hemodynamic prediction of complex treatment strategies for intracranial aneurysm. J Biomech, 2015, 48(12): 3332-3340.
|
22. |
Ma D, Dargush G F, Natarajan S K, et al. Computer modeling of deployment and mechanical expansion of neurovascular flow diverter in patient-specific intracranial aneurysms. J Biomech, 2012, 45(13): 2256-2263.
|
23. |
MA D, Dumount T M, Kosukegawa H, et al. High Fidelity Virtual Stenting (HiFiVS) for intracranial aneurysm flow diversion: In vitro and in silico. Ann Biomed Eng, 2013, 41(10): 2143-2156.
|
24. |
Cai Y, Meng Z, Jiang Y, et al. Finite element modeling and simulation of the implantation of braided stent to treat cerebral aneurysm. Medicine in Novel Technology and Devices, 2020, 5: 100031.
|
25. |
孟庄源, 马韬, 王盛章, 等. 覆膜支架治疗主动脉夹层的有限元分析. 医用生物力学, 2018, 33(3): 31-35.
|
26. |
Ma T, Dong Z H, Wang S, et al. Computational investigation of interaction between stent graft and aorta in retrograde type A dissection after thoracic endovascular aortic repair for type B aortic dissection. J Vasc Surg, 2018, 68(6S): 14S-21S.
|
27. |
阚晓昕, 白一帆, 马韬, 等. 基于 CT 影像重建的主动脉夹层的流固耦合模拟. 水动力学研究与进展, 2015, 30(6): 701-706.
|
28. |
Carroccio A, Faries P, Morrissey N, et al. Predicting iliac limb occlusions after bifurcated aortic stent grafting: Anatomic and device related causes. J Vasc Surg, 2002, 36(4): 679-684.
|
29. |
Zarins C K, Arko F R, Crabtree T, et al. Explant analysis of AneuRx stent grafts: Relationship between structural findings and clinical outcome. J Vasc Surg, 2004, 40(1): 1-11.
|
30. |
谷雪莲, 胡方遒, 于凯, 等. 两种覆膜支架的生物力学对比分析. 医用生物力学, 2015, 30(5): 410-415.
|
31. |
Meng Z, Ma T, Cai Y, et al. Numerical modeling and simulations of type B aortic dissection treated by stent-grafts with different oversizing ratios. Artif Organs, 2020. Doi: 10.1111/aor.13750.
|