1. |
扈杨, 左丽君, 余舒扬, 等. 帕金森病患者伴很可能的快速眼动睡眠行为障碍和相关因素的研究. 中华临床医师杂志, 2013, 7(12): 5216-5222.
|
2. |
Kim Y, Kim Y E, Park E O, et al. REM sleep behavior disorder portends poor prognosis in Parkinson’s disease: A systematic review. J Clin Neurosci, 2018, 47: 6-13.
|
3. |
杨改清, 徐志强, 胥丽霞, 等. 帕金森病精神病性障碍患者快速眼动睡眠行为障碍研究. 中华行为医学与脑科学杂志, 2019, 28(1): 59-63.
|
4. |
郁婷婷, 丁勇民, 黄卫. 快速眼动睡眠期行为障碍与帕金森病相关性的研究进展. 中华老年医学杂志, 2015, 34(7): 816-818.
|
5. |
胡艳, 王萍. 伴快速眼动睡眠期行为障碍的帕金森病临床研究进展. 中华神经医学杂志, 2017, 16(3): 313-316.
|
6. |
Vendette M, Gagnon J F, Decary A, et al. REM sleep behavior disorder predicts cognitive impairment in Parkinson disease without dementia. Neurology, 2007, 69(19): 1843-1849.
|
7. |
Figorilli M, Marques A R, Meloni M, et al. Diagnosing REM sleep behavior disorder in Parkinson’s disease without a gold standard: a latent-class model study. Sleep, 2020, 43(7): 1-8.
|
8. |
Sateia M J. International classification of sleep disorders-third edition: highlights and modifications. Chest, 2014, 146(5): 1387-1394.
|
9. |
Louis E K S, Boeve B F. REM sleep behavior disorder: Diagnosis, clinical implications, and future directions. Mayo Clin Proc, 2017, 92(11): 1723-1736.
|
10. |
Bolitho S J, Naismith S L, Terpening Z, et al. Investigating rapid eye movement sleep without atonia in Parkinson's disease using the rapid eye movement sleep behavior disorder screening questionnaire. Mov Disord, 2014, 29(6): 736-742.
|
11. |
Chen X, Xu X, Liu A, et al. The use of multivariate EMD and CCA for denoising muscle artifacts from few-channel EEG recordings. IEEE Trans Instrum Meas, 2018, 67(2): 359-370.
|
12. |
覃小雅, 袁媛, 陈彦, 等. 头皮脑电图在迷走神经电刺激治疗难治性癫痫研究中的应用. 生物医学工程学杂志, 2020, 37(4): 699-707.
|
13. |
李昕, 安占周, 李秋月, 等. 加权多重多尺度熵及其在孤独症儿童脑电信号分析中的应用. 生物医学工程学杂志, 2019, 36(1): 33-39,49.
|
14. |
付荣荣, 田永胜, 鲍甜恬. 基于稀疏共空间模式和Fisher判别的单次运动想象脑电信号识别方法. 生物医学工程学杂志, 2019, 36(6): 911-915,923.
|
15. |
胡盼, 张磊, 周蚌艳, 等. 基于独立分量分析的在线脑-机接口系统. 生物医学工程学杂志, 2017, 34(1): 106-114.
|
16. |
Koch H, Christensen J A, Frandsen R, et al. Classification of IRBD and Parkinson’s patients using a general data-driven sleep staging model built on EEG// 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Osaka: IEEE, 2013: 4275-4278.
|
17. |
Ferini-Strambi L, Fasiello E, Sforza M, et al. Neuropsychological, electrophysiological, and neuroimaging biomarkers for REM behavior disorder. Expert Rev Neurother, 2019, 19(11): 1069-1087.
|
18. |
Bisgaard S, Duun-Christensen B, Kempfner L, et al. EEG recordings as a source for the detection of IRBD// 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Milan: IEEE, 2015: 606-609.
|
19. |
Iasemidis L D, Shiau D S, Chaovalitwongse W, et al. Adaptive epileptic seizure prediction system. IEEE Trans Biomed Eng, 2003, 50(5): 616-627.
|
20. |
Greenspan H, van Ginneken B, Summers R M. Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Trans Med Imaging, 2016, 35(5): 1153-1159.
|
21. |
Wei L, Lin Y, Wang J, et al. Time-frequency convolutional neural network for automatic sleep stage classification based on single-channel EEG// 2017 29th International Conference on Tools with Artificial Intelligence (ICTAI). Boston: IEEE, 2017: 88-95.
|
22. |
Jadhav P, Rajguru G, Datta D, et al. Automatic sleep stage classification using time–frequency images of CWT and transfer learning using convolution neural network. Biocybern Biomed Eng, 2020, 40(1): 494-504.
|
23. |
Fraiwan L, Lweesy K, Khasawneh N, et al. Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier. Comput Meth Prog Biomed, 2012, 108(1): 10-19.
|
24. |
Waibel A, Hanazawa T, Hinton G, et al. Phoneme recognition using time-delay neural networks. IEEE Trans Acoust Speech Signal Process, 1989, 37(3): 393-404.
|
25. |
杨婧, 耿辰, 王海林, 等. 基于 DenseNet 的低分辨 CT 影像肺腺癌组织学亚型分类. 浙江大学学报(工学版), 2019, 53(6): 1164-1170.
|
26. |
杨熠, 钱旭升, 周志勇, 等. 采用影像组学的肾肿瘤组织学亚型分类. 浙江大学学报(工学版), 2019, 53(12): 2381-2388.
|
27. |
Truong N D, Nguyen A D, Kuhlmann L, et al. Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram. Neural Netw, 2018, 105: 104-111.
|
28. |
Usman S M, Khalid S, Aslam M H. Epileptic seizures prediction using deep learning techniques. IEEE Access, 2020, 8: 39998-40007.
|
29. |
Budak U, Bajaj V, Akbulut Y, et al. An effective hybrid model for EEG-based drowsiness detection. IEEE Sens J, 2019, 19(17): 7624-7631.
|
30. |
Yuan L, Cao J. Patients’ EEG data analysis via spectrogram image with a convolution neural network// 2017 International Conference on Intelligent Decision Technologies. Sorrento: Springer, 2017: 13-21.
|
31. |
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436-444.
|
32. |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. Proc Int Conf Learn Representat, 2015: 1-14.
|
33. |
Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift// Proceedings of ICML 2015. France: IMLS, 2015: 448-456.
|
34. |
Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res, 2014, 15(1): 1929-1958.
|
35. |
Krogh A, Hertz J A. A simple weight decay can improve generalization// J. Moody J, Hanson S, Lippmann R P. Advances in Neural Information Processing Systems 4 (NIPS 1991). UK: MIT, 1992: 950-957.
|
36. |
Chen T, Guestrin C. XGBoost: A scalable tree boosting system// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. USA: ACM, 2016: 785-794.
|
37. |
Ruffini G, Ibaez D, Castellano M, et al. Deep learning with EEG spectrograms in rapid eye movement behavior disorder. Front Neurol, 2019, 10: 806.
|
38. |
Wang Y, Wang Z W, Yang Y C, et al. Validation of the rapid eye movement sleep behavior disorder screening questionnaire in China. J Clin Neurosci, 2015, 22(9): 1420-1424.
|
39. |
程晨晨, 尤波, 刘燕, 等. 基于深度神经网络的个性化睡眠癫痫发作预测. 模式识别与人工智能, 2021, 34(4): 333-342.
|
40. |
刘伟楠, 刘燕, 佟宝同, 等. 基于功率谱的睡眠中癫痫发作预测. 生物医学工程学杂志, 2018, 35(3): 329-336.
|
41. |
Selvaraju R R, Cogswell M, Das A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization. Int J Comput Vision, 2020, 128(2): 336-359.
|
42. |
Li Y, Yang H, Li J, et al. EEG-based intention recognition with deep recurrent-convolution neural network: performance and channel selection by Grad-CAM. Neurocomputing, 2020, 415: 225-233.
|
43. |
Cooray N, Andreotti F, Lo C, et al. Detection of REM sleep behaviour disorder by automated polysomnography analysis. Clin Neurophysiol, 2019, 130(4): 505-514.
|