1. |
Shivani-Becker S, Carr M M. Current management and referral patterns of pediatricians for acute otitis media. Int J Pediatr Otorhinolaryngol, 2018, 113: 19-21.
|
2. |
American Academy Of Pediatrics Media. Diagnosis and management of acute otitis media. Pediatrics, 2004, 113(5): 1451-1465.
|
3. |
杨仕明, 袁虎. 中耳炎的分类分型和诊治. 中华耳鼻咽喉头颈外科杂志, 2007, 42(7): 554-557.
|
4. |
Nyquist A, Gonzales R, Steiner J F, et al. Antibiotic prescribing for children with colds, upper respiratory tract infections, and bronchitis. JAMA, 1998, 279(11): 875-877.
|
5. |
Marom T, Kraus O, Habashi N, et al. Emerging technologies for the diagnosis of otitis media. Otolaryngol Head Neck Surg, 2019, 160(3): 447-456.
|
6. |
Goggin S L, Eikelboom R H, Atlas M D. Clinical decision support systems and computer-aided diagnosis in otology. Otolaryngol Head Neck Surg, 2007, 136(4): 21-26.
|
7. |
Sundvall P, Papachristodoulou C E, Nordeman L. Diagnostic methods for acute otitis media in 1 to 12 year old children: a cross sectional study in primary health care. BMC Fam Pract, 2019, 20(1): 127-134.
|
8. |
Blomgren K, Pitkäranta A. Is it possible to diagnose acute otitis media accurately in primary health care?. Family Practice, 2003, 20(5): 524-527.
|
9. |
梁蒙蒙, 周涛, 张飞飞, 等. 卷积神经网络及其在医学图像分析中的应用研究. 生物医学工程学杂志, 2018, 35(6): 977-985.
|
10. |
俞益洲, 石德君, 马杰超, 等. 人工智能在医学影像分析中的应用进展. 中国医学影像技术, 2019, 35(12): 1808-1812.
|
11. |
Heck V, Wangenheim A V, Abdala D D, et al. Computational techniques for accompaniment and measuring of otology pathologies// Twentieth IEEE International Symposium on Computer-Based Medical Systems. Maribor Slovenia: IEEE, 2007: 53-58.
|
12. |
Mironică I, Vertan C, Gheorghe D C. Automatic pediatric otitis detection by classification of global image features// 2011 E-Health and Bioengineering Conference (EHB). Iasi Romania: IEEE, 2011: 1-4.
|
13. |
Shie C, Chang H, Fan F, et al. A hybrid feature-based segmentation and classification system for the computer aided self-diagnosis of otitis media// 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Chicago: IEEE, 2014: 4655-4658.
|
14. |
Myburgh H C, Van Zijl W H, Swanepoel D, et al. Otitis media diagnosis for developing countries using tympanic membrane image-analysis. EBioMedicine, 2016, 5: 156-160.
|
15. |
Myburgh H C, Jose S, Swanepoel D W, et al. Towards low cost automated smartphone- and cloud-based otitis media diagnosis. Biomed Signal Process Control, 2018, 39: 34-52.
|
16. |
Lemley J, Bazrafkan S, Corcoran P. Deep learning for consumer devices and services: Pushing the limits for machine learning, artificial intelligence, and computer vision. IEEE Consum Electron Mag, 2017, 6(2): 48-56.
|
17. |
罗会兰, 陈鸿坤. 基于深度学习的目标检测研究综述. 电子学报, 2020, 48(6): 1230-1239.
|
18. |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Commun ACM, 2017, 60(6): 84-90.
|
19. |
Başaran E, Şengür A, Cömert Z, et al. Normal and acute tympanic membrane diagnosis based on gray level co-occurrence matrix and artificial neural networks// 2019 International Artificial Intelligence and Data Processing Symposium (IDAP). Malatya Turkey: IEEE, 2019: 1-6.
|
20. |
Viscaino M, Maass J C, Delano P H, et al. Computer-aided diagnosis of external and middle ear conditions: A machine learning approach. PLoS one, 2020, 15(3): 229226.
|
21. |
Everingham M, Van Gool L, Williams C K, et al. The pascal visual object classes (voc) challenge. Int J Comput Vis, 2010, 88(2): 303-338.
|
22. |
Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell, 2016, 39(6): 1137-1149.
|
23. |
Zhang L, Lin L, Liang X, et al. Is faster R-CNN doing well for pedestrian detection?// European Conference on Computer Vision. Amsterdam: Springer, 2016: 443-457.
|
24. |
鞠孟汐, 李欣蔚, 李章勇. 基于深度主动学习的白带白细胞智能检测方法研究. 生物医学工程学杂志, 2020, 37(3): 519-526.
|
25. |
Salamon J, Bello J P. Deep convolutional neural networks and data augmentation for environmental sound classification. IEEE Signal Process Lett, 2017, 24(3): 279-283.
|
26. |
Frid-Adar M, Diamant I, Klang E, et al. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing, 2018, 321: 321-331.
|
27. |
Ke H, Chen D, Li X, et al. Towards brain big data classification: Epileptic EEG identification with a lightweight VGGNet on global MIC. IEEE Access, 2018, 6: 14722-14733.
|
28. |
Wu Z, Shen C, Van Den Hengel A. Wider or deeper: Revisiting the resnet model for visual recognition. Pattern Recog, 2019, 90: 119-133.
|
29. |
Yin W, Zhao C, Chen Y. Germplasm selection based on machine vision// 2019 7th International Conference on Information Technology: IoT and Smart City. Shanghai: Association for Computing Machinery, 2019: 234-237.
|
30. |
Shin H, Roth H R, Gao M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging, 2016, 35(5): 1285-1298.
|
31. |
Lin T, Dollár P, Girshick R, et al. Feature pyramid networks for object detection// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 2117-2125.
|
32. |
宋尚玲, 杨阳, 李夏, 等. 基于Faster-RCNN的肺结节检测算法. 中国生物医学工程学报, 2020, 39(2): 129-136.
|
33. |
Kong T, Yao A, Chen Y, et al. Hypernet: Towards accurate region proposal generation and joint object detection// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 845-853.
|
34. |
Ding P, Zhang Y, Deng W J, et al. A light and faster regional convolutional neural network for object detection in optical remote sensing images. ISPRS J Photogramm Remote Sens, 2018, 141: 208-218.
|
35. |
Fushiki T. Estimation of prediction error by using K-fold cross-validation. Statist Comput, 2011, 21(2): 137-146.
|
36. |
Başaran E, Cömert Z, Çelik Y. Convolutional neural network approach for automatic tympanic membrane detection and classification. Biomed Signal Process Control, 2020, 56: 101734.
|