1. |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424.
|
2. |
郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析. 中华肿瘤杂志, 2019, 41(1): 19-28.
|
3. |
Ostrom Q T, Gittleman H, Truitt G, et al. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2011-2015. Neuro Oncology, 2018, 20(suppl 4): iv1-iv86.
|
4. |
Gladson C L, Prayson R A, Liu W M. The pathobiology of glioma tumors. Annu Rev Pathol Mech, 2010, 5: 33-50.
|
5. |
Louis D N, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol, 2016, 131(6): 803-820.
|
6. |
Raza S E A, Cheung L, Shaban M, et al. Micro-Net: A unified model for segmentation of various objects in microscopy images. Med Image Anal, 2019, 52: 160-173.
|
7. |
Koohbanani N A, Jahanifar M, Gooya A, et al. Nuclear instance segmentation using a proposal-free spatially aware deep learning framework// International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Shenzhen: MICCAI Society, 2019: 622-630.
|
8. |
Naylor P, Laé M, Reyal F, et al. Segmentation of nuclei in histopathology images by deep regression of the distance map. IEEE T Med Imaging, 2018, 38(2): 448-459.
|
9. |
He J, Wang C, Jiang D, et al. CycleGAN with an improved loss function for cell detection using partly labeled images. IEEE J Biomed Health, 2020, 24(9): 2473-2480.
|
10. |
Koyuncu C F, Gunesli G N, Cetin-Atalay R, et al. DeepDistance: A multi-task deep regression model for cell detection in inverted microscopy images. Med Image Anal, 2020, 63: 101720.
|
11. |
Sirinukunwattana K, Raza S E A, Tsang Y W, et al. Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE T Med Imaging, 2016, 35(5): 1196-1206.
|
12. |
Graham S, Vu Q D, Raza S E A, et al. Hover-net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images. Med Image Anal, 2019, 58: 101563.
|
13. |
Meng N, Lam E Y, Tsia K K, et al. Large-scale multi-class image-based cell classification with deep learning. IEEE J Biomed Health, 2018, 23(5): 2091-2098.
|
14. |
Martin V, Kim T H, Kwon M, et al. A more comprehensive cervical cell classification using convolutional neural network. J Am Soc Nephrol, 2018, 7(5): S66.
|
15. |
Xu J, Cai C, Zhou Y, et al. Multi-tissue partitioning for whole slide images of colorectal cancer histopathology images with deeptissue net// European Congress on Digital Pathology (ECDP). Warwick: ESDIP, 2019: 100-108.
|
16. |
Ing N, Ma Z, Li J, et al. Semantic segmentation for prostate cancer grading by convolutional neural networks// Medical Imaging 2018: Digital Pathology. Houston: SPIE, 2018, 10581: 105811B.
|
17. |
Ker J, Bai Y, Lee H Y, et al. Automated brain histology classification using machine learning. J Clin Neurosci, 2019, 66: 239-245.
|
18. |
Barker J, Hoogi A, Depeursinge A, et al. Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles. Med Image Anal, 2016, 30: 60-71.
|
19. |
Mousavi H S, Monga V, Rao G, et al. Automated discrimination of lower and higher grade gliomas based on histopathological image analysis. J Pathol Inform, 2015, 6: 15.
|
20. |
Yan C, Nakane K, Wang X, et al. Automated Gleason grading on prostate biopsy slides by statistical representations of homology profile. Comput Meth Prog Bio, 2020, 194: 105528.
|
21. |
Ertosun M G, Rubin D L. Automated grading of gliomas using deep learning in digital pathology images: A modular approach with ensemble of convolutional neural networks// AMIA Annual Symposium Proceedings. San Francisco: AMIA, 2015, 2015: 1899.
|
22. |
Awan R, Sirinukunwattana K, Epstein D, et al. Glandular morphometrics for objective grading of colorectal adenocarcinoma histology images. Sci Rep UK, 2017, 7(1): 16852.
|
23. |
Tolkach Y, Dohmgörgen T, Toma M, et al. High-accuracy prostate cancer pathology using deep learning. Nat Mach Intell, 2020, 2(7): 411-418.
|
24. |
Li W, Li J, Sarma K V, et al. Path R-CNN for prostate cancer diagnosis and Gleason grading of histological images. IEEE T Med Imaging, 2018, 38(4): 945-954.
|
25. |
Wei J W, Tafe L J, Linnik Y A, et al. Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks. Sci Rep UK, 2019, 9(1): 3358.
|
26. |
Lawson P, Sholl A B, Brown J Q, et al. Persistent homology for the quantitative evaluation of architectural features in prostate cancer histology. Sci Rep UK, 2019, 9(1): 1139.
|
27. |
Shi J, Wu J, Li Y, et al. Histopathological image classification with color pattern random binary hashing-based PCANet and matrix-form classifier. IEEE J Biomed Health, 2016, 21(5): 1327-1337.
|
28. |
Shi J, Zheng X, Wu J, et al. Quaternion Grassmann average network for learning representation of histopathological image. Pattern Recogn, 2019, 89: 67-76.
|
29. |
Wright A I, Magee D, Quirke P, et al. Incorporating local and global context for better automated analysis of colorectal cancer on digital pathology slides. Procedia Comput Sci, 2016, 90: 125-131.
|
30. |
Mobadersany P, Yousefi S, Amgad M, et al. Predicting cancer outcomes from histology and genomics using convolutional networks. P Natl Acad Sci USA, 2018, 115(13): E2970-E2979.
|
31. |
Kurc T, Bakas S, Ren X, et al. Segmentation and classification in digital pathology for glioma research: Challenges and deep learning approaches. Front Neurosci Switz, 2020, 14: 27.
|
32. |
Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 2818-2826.
|
33. |
Huang G, Liu S, Van der Maaten L, et al. Condensenet: An efficient densenet using learned group convolutions// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE, 2018: 2752-2761.
|
34. |
Doyle S, Hwang M, Shah K, et al. Automated grading of prostate cancer using architectural and textural image features// 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Arlington: IEEE, 2007: 1284-1287.
|
35. |
Ali S, Veltri R, Epstein J A, et al. Cell cluster graph for prediction of biochemical recurrence in prostate cancer patients from tissue microarrays// Medical Imaging 2013: Digital Pathology. Lake Buena Vista: SPIE, 2013, 8676: 86760H.
|
36. |
Peng H, Long F, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE T Pattern Anal, 2005, 27(8): 1226-1238.
|