1. |
蒲慕明, 徐波, 谭铁牛. 脑科学与类脑研究概述. 中国科学院院刊, 2016, 31(7): 725-736, 714.
|
2. |
蒲慕明. 脑科学的未来. 心理学通讯, 2019, 2(2): 80-83.
|
3. |
张荣, 李伟平, 莫同. 深度学习研究综述. 信息与控制, 2018, 47(4): 385-397, 410.
|
4. |
Maass W. Networks of spiking neurons: the third generation of neural network models. Neural Netw, 1997, 10(9): 1659-1671.
|
5. |
Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol, 1952, 117(4): 500-544.
|
6. |
Abbott L F. Lapicque's introduction of the integrate-and-fire model neuron. Brain Res Bull, 2000, 50(5/6): 303-304.
|
7. |
Burkitt A N. A review of the integrate-and-fire neuron model: I. homogeneous synaptic input. Biol Cybern, 2006, 95(1): 1-19.
|
8. |
Gerstner W, Kistler W. Spiking neuron models: single neurons, populations, plasticity. Cambridges: Cambridge University Press, 2002: 1-477.
|
9. |
Gerstner W. A framework for spiking neuron models: the spike response model. North-Holland: Handbook of Biological Physics, 2001, 4: 469-516.
|
10. |
Izhikevich E M. Simple model of spiking neurons. IEEE Trans Neural Netw, 2003, 14(6): 1569-1572.
|
11. |
Valadez-Godínez S, Sossa H, Santiago-Montero R. On the accuracy and computational cost of spiking neuron implementation. Neural Netw, 2020, 122: 196-217.
|
12. |
Zuo L, Chen Y, Zhang L, et al. A spiking neural network with probability information transmission. Neurocomputing, 2020, 408: 1-12.
|
13. |
Rumelhart D E, Hinton G E, Williams R J. Learning representations by back propagating errors. Nature, 1986, 323(6088): 533-536.
|
14. |
Song S, Miller K D, Abbott L F. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci, 2000, 3(9): 919-926.
|
15. |
Hebb D O. The organization of behavior: a neuropsychological theory. London: Psychology Press, 2005: 1-365.
|
16. |
Liu D, Yue S. Event-driven continuous STDP learning with deep structure for visual pattern recognition. IEEE Trans Cybern, 2019, 49(4): 1377-1390.
|
17. |
Liu D, Bellotto N, Yue S. Deep spiking neural network for video-based disguise face recognition based on dynamic facial movements. IEEE Trans Neural Netw Learn Syst, 2020, 31(6): 1843-1855.
|
18. |
Lee C, Srinivasan G, Panda P, et al. Deep spiking convolutional neural network trained with unsupervised spike timing dependent plasticity. IEEE Trans Cogn Dev Syst, 2019, 11(3): 384-394.
|
19. |
Lee C, Panda P, Srinivasan G, et al. Training deep spiking convolutional neural networks with STDP-based unsupervised pre-training followed by supervised fine-tuning. Front Neurosci, 2018, 12: 435.
|
20. |
Srinivasan G, Roy K. ReStoCNet: residual stochastic binary convolutional spiking neural network for memory-efficient neuromorphic computing. Front Neurosci, 2019, 13: 189.
|
21. |
Ponulak F, Kasinski A. A supervised learning in spiking neural networks with ReSuMe: sequence learning, classifification, and spike shifting. Neural Comput, 2010, 22(2): 467-510.
|
22. |
Taherkhani A, Belatreche A, Li Y, et al. A supervised learning algorithm for learning precise timing of multiple spikes in multilayer spiking neural networks. IEEE Trans Neural Netw Learn Syst, 2019, 29(11): 5396-5407.
|
23. |
Frémaux N, Wulfram G. Neuromodulated spike-timing-dependent plasticity, and theory of three-factor learning rules. Front Neural Circuits, 2016, 9: 85.
|
24. |
Brzosko Z, Zannone S, Schultz W, et al. Sequential neuromodulation of Hebbian plasticity offers mechanism for effective reward-based navigation. Elife, 2017, 6: e27756.
|
25. |
Mozafari M, Ganjtabesh M, Nowzari-Dalini A, et al. Bio-inspired digit recognition using reward-modulated spike-timing-dependent plasticity in deep convolutional networks. Pattern Recognit, 2019, 94: 87-95.
|
26. |
LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proc IEEE, 1998, 86(11): 2278-2324.
|
27. |
Bohte S, Kok J, Poutre H. Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing, 2002, 48(1-4): 17-37.
|
28. |
Hong C, Wei X, Wang J, et al. Training spiking neural networks for cognitive tasks: a versatile framework compatible with various temporal codes. IEEE Trans Neural Netw Learn Syst, 2020, 31(4): 1285-1296.
|
29. |
Kim D, Kornijcuk V, Hwang C S et al. SPSNN: nth order sequence-predicting spiking neural network. IEEE Access, 2020, 8: 110523-110534.
|
30. |
Shrestha S B, Orchard G. SLAYER: spike layer error reassignment in time// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc, 2018: 1412-1421.
|
31. |
Wu Y J, Deng L, Li G Q, et al. Spatio-temporal backpropagation for training high-performance spiking neural networks. Front Neurosci, 2018, 12: 331.
|
32. |
Jin Y, Zhang W, Li P. Hybrid macro/micro level backpropagation for training deep spiking neural networks// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc, 2018: 7005-7015.
|
33. |
Lee C, Sarwar S S, Panda P, et al. Enabling spike-based backpropagation for training deep neural network architectures. Front Neurosci, 2020, 14: 119.
|
34. |
Martinelli F, Dellaferrera G, Mainar P, et al. Spiking neural networks trained with backpropagation for low power neuromorphic implementation of voice activity detection// International Conference on Acoustics, Speech and Signal Processing (ICASSP). Barcelona: IEEE, 2020: 8544-8548.
|
35. |
Widrow B, Hoff M E. Adaptive switching circuits. Neurocomputing, 1960, 4: 126-134.
|
36. |
Mohemmed A, Schliebs S. SPAN: spike pattern association neuron for learning spatio-temporal spike patterns. Int J Neural Syst, 2012, 22(4): 1250012.
|
37. |
Yu Q, Tang H, Tan K C, et al. Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns. PloS ONE, 2013, 8(11): e78318.
|
38. |
蔺想红, 王向文, 党小超. 基于脉冲序列核的脉冲神经元监督学习算法. 电子学报, 2016, 44(12): 2877-2886.
|
39. |
Sengupta A, Ye Y, Wang R, et al. Going deeper in spiking neural networks: VGG and residual architectures. Front Neurosci, 2019, 13: 95.
|
40. |
Srinivasan G, Lee C, Sengupta A, et al. Training deep spiking neural networks for energy-efficient neuromorphic computing// International Conference on Acoustics, Speech and Signal Processing (ICASSP). Barcelona: IEEE, 2020: 8549-8553.
|
41. |
Merolla P A, Arthur J V, Alvarez-Icaza R, et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science, 2014, 345(6197): 668-673.
|
42. |
Neckar A, Fok S, Benjamin B V, et al. Braindrop: a mixed-signal neuromorphic architecture with a dynamical systems-based programming model. Proc IEEE, 2018, 107(1): 144-164.
|
43. |
Qiao N, Mostafa H, Corradi F, et al. A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and128K synapses. Front Neurosci, 2015, 9: 141.
|
44. |
Schemmel J, Brüderle D, Grübl A, et al. A wafer-scale neuromorphic hardware system for large-scale neural modeling// 2010 IEEE International Symposium on Circuits and Systems (ISCAS). Paris: IEEE, 2010: 1947-1950.
|
45. |
Schmitt S, Klaehn J, Bellec G, et al. Neuromorphic hardware in the loop: training a deep spiking network on the BrainScaleS wafer-scale system// 2017 International Joint Conference on Neural Networks (IJCNN). Alaska: IEEE, 2017: 2227-2234.
|
46. |
Schemmel J. Towards the second generation brainscales system[R/OL]. (2018-2-27) [2021-8-17]. https://niceworkshop.org/nice-2018-agenda/.
|
47. |
Andreas G, Billaudelle S, Cramer B, et al. Verification and design methods for the BrainScaleS neuromorphic hardware system. J Signal Process Syst, 2020, 92(11): 1277-1292.
|
48. |
Moradi S, Qiao N, Stefanini F, et al. A scalable multicore architecture with heterogeneous memory structures for dynamic neuromorphic asynchronous processors (DYNAPs). IEEE Trans Biomed Circuits Syst, 2018, 12(99): 106-122.
|
49. |
Thakur C S, Molin J L, Cauwenberghs G, et al. Large-scale neuromorphic spiking array processors: a quest to mimic the brain. Front Neurosci, 2018, 12: 891.
|
50. |
DeBole M V, Taba B, Amir A, et al. TrueNorth: accelerating from zero to 64 million neurons in 10 years. Computer, 2019, 52(5): 20-29.
|
51. |
Akopyan F, Sawada J, Cassidy A, et al. TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip. IEEE Trans Comput-Aid Des Integr Circuits Syst, 2015, 34(10): 1537-1557.
|
52. |
Haessig G, Cassidy A, Alvarez R, et al. Spiking optical flow for event-based sensors using IBM's TrueNorth neurosynaptic system. IEEE Trans Biomed Circuits Syst, 2018, 12(4): 860-870.
|
53. |
Palit I, Yang L, Ma Y, et al. Biomedical image segmentation using fully convolutional networks on TrueNorth// 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS). Karlstad: IEEE, 2018: 375-380.
|
54. |
Kiral-Kornek I, Mendis D, Nurse E S, et al. TrueNorth-enabled real-time classification of EEG data for brain-computer interfacing// 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Korea: IEEE, 2017: 1648-1651.
|
55. |
Furber S B, Lester D R, Plana L A, et al. Overview of the SpiNNaker system architecture. IEEE Trans Comput, 2013, 62(12): 2454-2467.
|
56. |
Barchi F, Urgese G, Siino A, et al. Flexible on-line reconfiguration of multi-core neuromorphic platforms. IEEE Trans Emerg Top Comput, 2019, 9(2): 915-927.
|
57. |
Hoppner S. Spinnaker2—Towards extremely efficient digital neuromorphics and multi-scale brain emulation[R/OL]. (2018-2-27) [2021-8-17]. https://niceworkshop.org/nice-2018-agenda/.
|
58. |
Charlotte F, Martin L, Jean-Didier L, et al. A 0.086-mm2 12.7-pJ/SOP 64k-synapse 256-neuron online-learning digital spiking neuromorphic processor in 28-nm CMOS. IEEE Trans Biomed Circuits Syst, 2019, 13(1): 145-158.
|
59. |
Charlotte F, Jean-Didier L, David B. MorphIC: A 65-nm 738k-synapse/mm2 quad-core binary-weight digital neuromorphic processor with stochastic spike-driven online learning. IEEE Trans Biomed Circuits Syst., 2019, 13(5): 999-1010.
|
60. |
Davies M, Srinivasa N, Lin T H, et al. Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro, 2018, 38(1): 82-99.
|
61. |
Blouw P, Choo X, Hunsberger E, et al. Benchmarking keyword spotting efficiency on neuromorphic hardware// Proceedings of the 7th Annual Neuro-inspired Computational Elements Workshop. New York: Association for Computing Machinery, 2019: 1-8.
|
62. |
Shen J, Ma D, Gu Z, et al. Darwin: a neuromorphic hardware co-processor based on spiking neural networks. Sci China Inf Sci, 2016, 59(2): 1-5.
|
63. |
Ma D, Shen J, Gu Z, et al. Darwin: a neuromorphic hardware co-processor based on spiking neural networks. J Syst Architect, 2017, 77: 43-51.
|
64. |
Deng L, Wang G, Li G, et al. Tianjic: a unified and scalable chip bridging spike-based and continuous neural computation. IEEE J Solid-State Circuits, 2020, 55(8): 2228-2246.
|
65. |
Pei J, Deng L, Song S, et al. Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature, 2019, 572(7767): 106.
|