1. |
Hetu S, Gregoire M, Saimpont A, et al. The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav R, 2013, 37(5): 930-949.
|
2. |
Torres P E, Torres E A, Hernandez Alvarez M, et al. EEG-based BCI emotion recognition: a survey. Sensors(Basel), 2020, 20(18): 5083.
|
3. |
Liu Yiliang, Su Wenbin, Li Zhijun, et al. Motor-imagery-based teleoperation of a dual-arm robot performing manipulation tasks. IEEE Trans Cogn Dev Syst, 2019, 11(3): 414-424.
|
4. |
Nourmohammadi A, Jafari M, Zander T O. A survey on unmanned aerial vehicle remote control using brain–computer interface. IEEE Trans Hum-Mach Syst, 2018, 48(4): 337-348.
|
5. |
Wang H, Li T, Bezerianos A, et al. The control of a virtual automatic car based on multiple patterns of motor imagery BCI. Med Biol Eng Comput, 2019, 57(1): 299-309.
|
6. |
Tariq M, Trivailo P M, Simic M. Mu-Beta event-related (de)synchronization and EEG classification of left-right foot dorsiflexion kinaesthetic motor imagery for BCI. PLoS One, 2020, 15(3): e0230184.
|
7. |
Wang Kun, Xu Minpeng, Wang Yijun, et al. Enhance decoding of pre-movement EEG patterns for brain-computer interfaces. J Neural Eng, 2020, 17(1): 016033.
|
8. |
Lotte F, Congedo M, Lecuyer A, et al. A review of classification algorithms for EEG-based brain-computer interfaces. J Neural Eng, 2007, 4(2): R1-R13.
|
9. |
Kevric J, Subasi A. Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomed Signal Proces, 2017, 31: 398-406.
|
10. |
周志华. 机器学习. 北京: 清华大学出版社, 2016: 53.
|
11. |
Lotte F. Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain–computer interfaces. Pro IEEE, 2015, 103(6): 871-890.
|
12. |
Razzak I, Hameed I A, Xu G. Robust sparse representation and multiclass support matrix machines for the classification of motor imagery EEG signals. IEEE J Transl Eng He, 2019, 7: 1-8.
|
13. |
Saleh A I, Shehata S A, Labeeb L M. A fuzzy-based classification strategy (FBCS) based on brain-computer interface. Soft Comput, 2019, 23(7): 2343-2367.
|
14. |
Miao Minmin, Zeng Hong, Wang Aimin, et al. Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: an sparse regression and weighted naive bayesian classifier-based approach. J Neurosci Methods, 2017, 278: 13-24.
|
15. |
Craik A, He Y, Contreras Vidal J L. Deep learning for electroencephalogram (EEG) classification tasks: a review. J Neural Eng, 2019, 16(3): 031001.
|
16. |
Olivas-Padilla B E, Chacon-Murguia M I. Classification of multiple motor imagery using deep convolutional neural networks and spatial filters. Appl Soft Comput, 2019, 75: 461-472.
|
17. |
Sakhavi S, Guan C, Yan S. Learning temporal information for brain-computer interface using convolutional neural networks. IEEE Trans Neural Netw Learn Syst, 2018, 29(11): 5619-5629.
|
18. |
Xu Baoguo, Zhang Linlin, Song Aiguo, et al. Wavelet transform time-frequency image and convolutional network-based motor imagery EEG classification. IEEE Access, 2019, 7: 6084-6093.
|
19. |
Lun Xiangmin, Yu Zhenglin, Chen Tao, et al. A simplified CNN classification method for MI-EEG via the electrode pairs signals. Front Hum Neurosci, 2020, 14: 338.
|
20. |
Li G, Lee C H, Jung J J, et al. Deep learning for EEG data analytics: a survey. Concurr Comp-Pract E, 2019, 32(18): e5199.
|
21. |
Luo T-J, Zhou C-L, Chao F. Exploring spatial-frequency-sequential relationships for motor imagery classification with recurrent neural network. Bmc Bioinformatics, 2018, 19: 344.
|
22. |
Xu Jiacan, Zheng Hao, Wang Jianhui, et al. Recognition of EEG signal motor imagery intention based on deep multi-view feature learning. Sensors(Basel), 2020, 20(12): 3496.
|
23. |
Lu Na, Li Tengfei, Ren Xiaodong, et al. A deep learning scheme for motor imagery classification based on restricted boltzmann machines. IEEE Trans Neural Syst Rehabil Eng, 2017, 25(6): 566-576.
|
24. |
Yang Jun, Yao Shaowen, Wang Jin. Deep fusion feature learning network for MI-EEG classification. IEEE Access, 2018, 6: 79050-79059.
|
25. |
Ha K W, Jeong J W. Motor imagery EEG classification using capsule networks. Sensors(Basel), 2019, 19(13): 2854.
|
26. |
周晓宇, 许敏鹏, 肖晓琳, 等. 脑-机接口中脑电解码算法研究综述. 生物医学工程学杂志, 2019, 36(5): 856-861.
|
27. |
Yger F, Berar M, Lotte F. Riemannian approaches in brain-computer interfaces: a review. IEEE Trans Neural Syst Rehabil Eng, 2017, 25(10): 1753-1762.
|
28. |
Barachant A, Bonnet S, Congedo M, et al. Multiclass brain-computer interface classification by Riemannian geometry. IEEE Trans Biomed Eng, 2012, 59(4): 920-928.
|
29. |
Congedo M, Barachant A, Bhatia R. Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review. Brain-Computer Interfaces, 2017, 4(3): 155-174.
|
30. |
Singh A, Lal S, Guesgen H W. Small sample motor imagery classification using regularized riemannian features. IEEE Access, 2019, 7: 46858-46869.
|
31. |
Tang F, Fan M, Tino P. Generalized learning riemannian space quantization: a case study on riemannian manifold of SPD matrices. IEEE Trans Neural Netw Learn Syst, 2020, 32(1): 281-292.
|
32. |
Xie Xiaofeng, Yu Zhu Liang, Gu Zhenghui, et al. Bilinear regularized locality preserving learning on riemannian graph for motor imagery BCI. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(3): 698-708.
|
33. |
Shin J. Random subspace ensemble learning for functional near-infrared spectroscopy brain-computer interfaces. Front Hum Neurosci, 2020, 14: 236.
|
34. |
Zhang Ranran, Xiao Xiaoyan, Liu Zhi, et al. A new motor imagery EEG classification method FB-TRCSP+RF based on CSP and random forest. IEEE Access, 2018, 6: 44944-44950.
|
35. |
Luo Jing, Gao Xing, Zhu Xiaobei, et al. Motor imagery EEG classification based on ensemble support vector learning. Comput Methods Programs Biomed, 2020, 193: 105464.
|
36. |
Zhang Li, Wen Dezhong, Li Changsheng, et al. Ensemble classifier based on optimized extreme learning machine for motor imagery classification. J Neural Eng, 2020, 17(2): 026004.
|
37. |
Talukdar U, Hazarika S M, Gan J Q. Adaptive feature extraction in EEG-based motor imagery BCI: tracking mental fatigue. J Neural Eng, 2020, 17(1): 016020.
|
38. |
Lotte F, Bougrain L, Cichocki A, et al. A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J Neural Eng, 2018, 15(3): 031005.
|
39. |
Talukdar U, Hazarika S M, Gan J Q. Adaptation of common spatial patterns based on mental fatigue for motor-imagery BCI. Biomed Signal Proces, 2020, 58: 101829.
|
40. |
Priyatharshini R, Chitrakala S. A self-learning fuzzy rule-based system for risk-level assessment of coronary heart disease. IETE J Res, 2018, 65(3): 288-297.
|
41. |
Komijani H, Parsaei M R, Khajeh E, et al. EEG classification using recurrent adaptive neuro-fuzzy network based on time-series prediction. Neural Comput Appl, 2019, 31(7): 2551-2562.
|
42. |
Saha S, Baumert M. Intra- and inter-subject variability in EEG-based sensorimotor brain computer interface: a review. Front Comput Neurosci, 2019, 13: 87.
|
43. |
Pan S J, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng, 2010, 22(10): 1345-1359.
|
44. |
Azab A M, Mihaylova L, Ang K K, et al. Weighted transfer learning for improving motor imagery-based brain-computer interface. IEEE Trans Neural Syst Rehabil Eng, 2019, 27(7): 1352-1359.
|
45. |
Wu Ha, Niu Yi, Li Fu, et al. A parallel multiscale filter bank convolutional neural networks for motor imagery EEG classification. Front Neurosci, 2019, 13: 1275.
|
46. |
Tan Chuanqi, Sun Fuchun, Fang Bin, et al. Autoencoder-based transfer learning in brain–computer interface for rehabilitation robot. Int J Adv Robot Syst, 2019, 16(2): 1729881419840860.
|
47. |
Xu Lichao, Xu Minpeng, Ke Yufeng, et al. Cross-dataset variability problem in EEG decoding with deep learning. Front Hum Neurosci, 2020, 14: 103.
|