1. |
Zimmerman M S, Smith A, Sable C, et al. Global, regional, and national burden of congenital heart disease. a systematic analysis for the global burden of disease study 2017. Lancet Child & Adolescent Health, 2020, 4(3): 185-200.
|
2. |
Deng S, Han J. Adaptive overlapping-group sparse denoising for heart sound signals. Biomedical Signal Processing and Control, 2018, 40: 49-57.
|
3. |
Liu C, Springer D, Li Q, et al. An open access database for the evaluation of heart sound algorithms. Physiol Meas, 2016, 37(12): 2181-2213.
|
4. |
Schmidt S E, Holst-Hansen C, Hansen J, et al. Acoustic features for the identification of coronary artery disease. IEEE Trans Biomed Eng, 2015, 62(11): 2611-2619.
|
5. |
Chen Qiyu, Zhang Weibin, Tian Xiang, et al. Automatic heart and lung sounds classification using convolutional neural networks//2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Jeju: Asia-Pacific Signal and Information Processing Association, 2016: 1-4.
|
6. |
Zabihi M, Rad A B, Kiranyaz S, et al. Heart sound anomaly and quality detection using ensemble of neural networks without segmentation//2016 Computing in Cardiology Conference (CinC), Vancouver: Computing in Cardiology, 2016: 613-616.
|
7. |
Rubin J, Abreu R, Ganguli A, et al. Classifying heart sound recordings using deep convolutional neural networks and Mel-frequency cepstral coefficients//2016 Computing in Cardiology Conference (CinC), Vancouver: Computing in Cardiology, 2016: 813-816.
|
8. |
Maknickas V, Maknickas A. Recognition of normal-abnormal phonocardiographic signals using deep convolutional neural networks and mel-frequency spectral coefficients. Physiol Meas, 2017, 38(8): 1671-1684.
|
9. |
Kay E, Agarwal A. DropConnected neural networks trained on time-frequency and inter-beat features for classifying heart sounds. Physiol Meas, 2017, 38(8): 1645-1657.
|
10. |
Hamidi M, Ghassemian H, Imani M. Classification of heart sound signal using curve fitting and fractal dimension. Biomedical Signal Processing and Control, 2018, 39: 351-359.
|
11. |
Zhang W, Han J, Deng S. Heart sound classification based on scaled spectrogram and partial least squares regression. Biomedical Signal Processing and Control, 2017, 32: 20-28.
|
12. |
Sepehri A A, Gharehbaghi A, Dutoit T, et al. A novel method for pediatric heart sound segmentation without using the ECG. Comput Methods Programs Biomed, 2010, 99(1): 43-48.
|
13. |
Lubaib P, Muneer K. The heart defect analysis based on PCG signals using pattern recognition techniques. Procedia Technology, 2016, 24: 1024-1031.
|
14. |
Zhang W, Han J, Deng S. Heart sound classification based on scaled spectrogram and tensor decomposition. Expert Systems with Applications, 2017, 84: 220-231.
|
15. |
Picone J W. Signal modeling techniques in speech recognition. Proceedings of the IEEE, 1993, 81(9): 1215-1247.
|
16. |
Sharma L N. Multiscale analysis of heart sound for segmentation using multiscale Hilbert envelope//2015 13th International Conference on ICT and Knowledge Engineering (ICT & Knowledge Engineering 2015), IEEE, 2015: 33-37.
|
17. |
Deng S, Han J. Towards heart sound classification without segmentation via autocorrelation feature and diffusion maps. Future Generation Computer Systems, 2016, 60: 13-21.
|
18. |
Das S, Pal S, Mitra M. Supervised model for cochleagram feature based fundamental heart sound identification. Biomedical Signal Processing and Control, 2019, 52: 32-40.
|
19. |
Liu F, Tong X, Zhang C, et al. Multi-peak detection algorithm based on the Hilbert transform for optical FBG sensing. Optical Fiber Technology, 2018, 45: 47-52.
|
20. |
Nilanon T, Yao Jiayu, Hao Junheng, et al. Normal/abnormal heart sound recordings classification using convolutional neural network//2016 Computing in Cardiology Conference (CinC), Vancouver: Computing in Cardiology , 2016: 585.
|
21. |
Zhang W, Han J, Deng S. Abnormal heart sound detection using temporal quasi-periodic features and long short-term memory without segmentation. Biomedical Signal Processing and Control, 2019, 53: 101560.
|
22. |
Chinchor N. MUC-4 evaluation metrics//4th Message Understanding Conference(MUC-4), Mclean: Morgan Kaufmann, 1992: 22-29.
|
23. |
Fan J, Upadhye S, Worster A. Understanding receiver operating characteristic (ROC) curves. CJEM, 2006, 8(1): 19-20.
|