1. |
Tennent G A, Brennan S O, Stangou A J, et al. Human plasma fibrinogen is synthesized in the liver. Blood, 2007, 109(5): 1971-1974.
|
2. |
Doolittle R F. Fibrinogen and fibrin. Annu Rev Biochem, 1984, 53(1): 195-229.
|
3. |
Bonnefoy A, Liu Q, Legrand C, et al. Efficiency of platelet adhesion to fibrinogen depends on both cell activation and flow. Biophys J, 2000, 78(6): 2834-2843.
|
4. |
Adams R A, Passino M, Sachs B D, et al. Fibrin mechanisms and functions in nervous system pathology. Mol Interv, 2004, 4(3): 163-176.
|
5. |
Tyagi N, Roberts A M, Dean W L, et al. Fibrinogen induces endothelial cell permeability. Mol Cell Biochem, 2008, 307(1/2): 13-22.
|
6. |
Davalos D, Akassoglou K. Fibrinogen as a key regulator of inflammation in disease. Semin Immunopathol, 2012, 34(1): 43-62.
|
7. |
Chen Y, Ju La, Zhou F, et al. An integrin αIIbβ3 intermediate affinity state mediates biomechanical platelet aggregation. Nat Mater, 2019, 18(7): 760-769.
|
8. |
Ju L, Mcfadyen J D, Al-Daher S, et al. Compression force sensing regulates integrin αIIbβ3 adhesive function on diabetic platelets. Nat Commun, 2018, 9(1): 1087.
|
9. |
Repetto O, de Re V. Coagulation and fibrinolysis in gastric cancer. Annals of the New York Academy of Sciences, 2017, 1404(1): 27-48.
|
10. |
Mosesson M W. Fibrinogen and fibrin structure and functions. Journal of Thrombosis and Haemostasis, 2005, 3(8): 1894-1904.
|
11. |
Koo J, Rafailovich M H, Medved L, et al. Evaluation of fibrinogen self-assembly: role of its αC region. J Thromb Haemost, 2010, 8(12): 2727-2735.
|
12. |
Weisel J W, Litvinov R I. The biochemical and physical process of fibrinolysis and effects of clot structure and stability on the lysis rate. Cardiovasc Hematol Agents Med Chem, 2008, 6(3): 161-180.
|
13. |
Kollman J M, Pandi L, Sawaya M R, et al. Crystal structure of human fibrinogen. Biochemistry, 2009, 48(18): 3877-3886.
|
14. |
Woodhead J L, Nagaswami C, Matsuda M, et al. The ultrastructure of fibrinogen Caracas II molecules, fibers, and clots. J Biol Chem, 1996, 271(9): 4946-4953.
|
15. |
Hantgan R R, Stahle M C, Lord S T. Dynamic regulation of fibrinogen: integrin αIIbβ3 binding. Biochemistry, 2010, 49(43): 9217-9225.
|
16. |
Du X, Plow E F, Frelinger A L, et al. Ligands “activate” integrin αIIbβ3 (platelet GPIIb-IIIa). Cell, 1991, 65(3): 409-416.
|
17. |
Leisner T M, Wencel-Drake J D, WANG W, et al. Bidirectional transmembrane modulation of integrin αⅡbβ3 conformations. Journal of Biological Chemistry, 1999, 274(18): 12945-12949.
|
18. |
Zafar H, Shang Y, Li J, et al. αIIbβ3 binding to a fibrinogen fragment lacking the γ-chain dodecapeptide is activation dependent and EDTA inducible. Blood Adv, 2017, 1(7): 417-428.
|
19. |
Dyr J E, Tichy I B, Jirouskova M, et al. Molecular arrangement of adsorbed fibrinogen molecules characterized by specific monoclonal antibodies and a surface plasmon resonance sensor. Sens Actuators B Chem, 1998, 51(1/3): 268-272.
|
20. |
Riedel T, Suttnar J, Brynda E, et al. Fibrinopeptides A and B release in the process of surface fibrin formation. Blood, 2011, 117(5): 1700-1706.
|
21. |
Sivaraman B, Latour R A. The relationship between platelet adhesion on surfaces and the structure versus the amount of adsorbed fibrinogen. Biomaterials, 2010, 31(5): 832-839.
|
22. |
Ugarova T P, Budzynski A Z, Shattil S J, et al. Conformational changes in fibrinogen elicited by its interaction with platelet membrane glycoprotein GPIIb-IIIa. J Biol Chem, 1993, 268(28): 21080-21087.
|
23. |
Zhang L, Casey B, Galanakis D K, et al. The influence of surface chemistry on adsorbed fibrinogen conformation, orientation, fiber formation and platelet adhesion. Acta Biomater, 2017, 54: 164-174.
|
24. |
王依璐, 刘晓玲, 丁孝茹, 等. 血管性血友病因子A1分子在大肠杆菌中的可溶性表达及功能鉴定. 中国组织工程研究, 2014, 18(38): 6153-6159.
|
25. |
王景雪, 薛晨阳, 刘超, 等. 平面波导硅基结构表面的APTES修饰研究. 传感技术学报, 2013, 26(2): 157-160.
|
26. |
Yu Shanshan, Liu Wang, Fang Jinhua, et al. AFM imaging reveals multiple conformational states of ADAMTS13. Journal of Biological Engineering, 2019, 13(1): 9.
|
27. |
高绪强, 刘晓玲, 吴建华, 等. 剪切流下VWF-A1介导的血小板钙响应. 医用生物力学, 2019, 34(01): 83-90.
|
28. |
Weisel J W, Veklich Y, Gorkun O. The sequence of cleavage of fibrinopeptides from fibrinogen is important for protofibril formation and enhancement of lateral aggregation in fibrin clots. J Mol Biol, 1993, 232(1): 285-297.
|
29. |
Kasirer-Friede A, Cozzi M R, Mazzucato M, et al. Signaling through GP Ib-IX-V activates alpha IIb beta 3 independently of other receptors. Blood, 2004, 103(9): 3403-3411.
|
30. |
Ju L, Chen Y, Zhou F, et al. Von willebrand factor-A1 domain binds platelet glycoprotein Ibα in multiple states with distinctive force-dependent dissociation kinetics. Thromb Res, 2015, 136(3): 606-612.
|
31. |
Koo J, Galanakis D, Liu Y, et al. Control of anti-thrombogenic properties: surface-induced self-assembly of fibrinogen fibers. Biomacromolecules, 2012, 13(5): 1259-1268.
|
32. |
Wu Yuguang, Simonovsky F I, Ratner B D, et al. The role of adsorbed fibrinogen in platelet adhesion to polyurethane surfaces: a comparison of surface hydrophobicity, protein adsorption, monoclonal antibody binding, and platelet adhesion. J Biomed Mater Res A, 2005, 74(4): 722-738.
|
33. |
Sivaraman B, Latour R A. Delineating the roles of the GPIIb/IIIa and GP-Ib-IX-V platelet receptors in mediating platelet adhesion to adsorbed fibrinogen and albumin. Biomaterials, 2011, 32(23): 5365-5370.
|
34. |
Kononova O, Litvinov R I, Blokhin D S, et al. Mechanistic basis for the binding of RGD- and AGDV-peptides to the platelet integrin αIIbβ3. Biochemistry, 2017, 56(13): 1932-1942.
|
35. |
Chiumiento A, Lamponi S, Barbucci R. Role of fibrinogen conformation in platelet activation. Biomacromolecules, 2007, 8(2): 523-531.
|
36. |
Banigo A T, Iwuji S C, Iheaturu N C. Application of biomaterials in tissue engineering: a review. J Chem Pharm Res, 2019, 11(4): 1-16.
|
37. |
魏雨, 张景迅, 范娟娟, 等. 心血管支架表面改性及应用. 生物医学工程学杂志, 2016, 33(3): 593-597,608.
|