1. |
Benjamin E J, Muntner P, Alonso A A, et al. Heart disease and stroke statistics-2019 update: a report from the American heart association. Circulation, 2019, 139(10): 56-528.
|
2. |
《中国心血管健康与疾病报告2019》编写组. 《中国心血管健康与疾病报告2019》要点解读. 中国心血管杂志, 2020, 25(05): 401-410.
|
3. |
Daemen M J, Ferguson M S, Gijsen F J, et al. Carotid plaque fissure: an underestimated source of intraplaque hemorrhage. Atherosclerosis, 2016, 254: 102-108.
|
4. |
Wei D, Wang G, Tang C, et al. Upregulation of SDF-1 is associated with atherosclerosis lesions induced by LDL concentration polarization. Ann Biomed Eng, 2012, 40(5): 1018-1027.
|
5. |
Kefayati S, Holdsworth D W, Poepping T L. Turbulence intensity measurements using particle image velocimetry in diseased carotid artery models: effect of stenosis severity, plaque eccentricity, and ulceration. J Biomech, 2014, 47(1): 253-263.
|
6. |
Ha H, Lee S J. Effect of swirling inlet condition on the flow field in a stenosed arterial vessel model. Med Eng Phys, 2014, 36(1): 119-128.
|
7. |
霍云龙. 冠脉循环和心肌力学性能. 医用生物力学, 2019, 34(1): 40-41.
|
8. |
Leng X, Davis L A, Deng X, et al. Numerical modeling of experimental human fibrous cap delamination. J Mech Behav Biomed Mater, 2016, 59: 322-336.
|
9. |
Kurihara O, Takano M, Miyauchi Y, et al. Vulnerable atherosclerotic plaque features: findings from coronary imaging. J Geriatr Cardiol, 2021, 18(7): 577-584.
|
10. |
Polzer S, Polišenská A, Novák K, et al. Moderate thickness of lipid core in shoulder region of atherosclerotic plaque determines vulnerable plaque: a parametric study. Med Eng Phys, 2019, 69: 140-146.
|
11. |
Doradla P, Otsuka K, Nadkarni A, et al. Biomechanical stress profiling of coronary atherosclerosis: identifying a multifactorial metric to evaluate plaque rupture risk. JACC Cardiovasc Imaging, 2020, 13(3): 804-816.
|
12. |
Wong K K, Thavornpattanapong P, Cheung S C, et al. Effect of calcification on the mechanical stability of plaque based on a three-dimensional carotid bifurcation model. BMC Cardiovascular Disorders, 2012, 12(1): 7.
|
13. |
Maldonado N, Kelly-Arnold A, Vengrenyuk Y, et al. A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture. Am J Physiol Heart Circ Physiol, 2012, 303(5): 619-628.
|
14. |
杨新华, 张玲, 王丽红, 等. 冠状动脉硬化斑块与血液动力学及心脏事件关联性分析. 局解手术学杂志, 2011, 20(6): 659-661.
|
15. |
丛梦杨, 赵慧慧, 许星明, 等. 右冠状动脉起源于左冠状窦的血流动力学分析. 医用生物力学, 2020, 35(3): 284-288.
|
16. |
邱菊辉, 王贵学, 刘华, 等. 切应力对动脉硬化斑块内新生血管形成及斑块稳定性的影响. 医用生物力学, 2009, 24(1): 17.
|
17. |
Assmann A, Benim A C, Gül F, et al. Pulsatile extracorporeal circulation during on-pump cardiac surgery enhances aortic wall shear stress. J Biomech, 2012, 45(1): 156-163.
|
18. |
梁竹青, 贡向辉, 王亚伟, 等. 颈动脉粥样硬化斑块的对称性特征对血流动力学环境影响的比较研究. 医用生物力学, 2019, 34(1): 113-114.
|
19. |
刘文智, 刘莹, 罗院明. 斑块偏心分布影响下多组分两相血流动力学数值模拟. 介入放射学杂志, 2019, 28(10): 969-973.
|
20. |
Chenu P, Zakhia R, Marchandise B, et al. Resistance of the atherosclerotic plaque during coronary angioplasty: a multivariate analysis of clinical and angiographic variables. Cathet Cardiovasc Diagn, 1993, 29(3): 203-209.
|
21. |
Rekhter M D, Hicks G W, Brammer D W, et al. Animal model that mimics atherosclerotic plaque rupture. Circ Res, 1998, 83(7): 705-713.
|
22. |
Bank A J, Versluis A, Dodge S M, et al. Atherosclerotic plaque rupture: a fatigue process?. Med Hypotheses, 2000, 55(6): 480-484.
|
23. |
Davis L A, Stewart S E, Carsten C G, et al. Characterization of fracture behavior of human atherosclerotic fibrous caps using a miniature single edge notched tensile test. Acta Biomater, 2016, 43: 101-111.
|
24. |
李志勇, 裴璇. 动脉硬化血管疲劳裂纹扩展与破裂理论与数值分析. 科技导报, 2012, 30(34): 28-31.
|
25. |
Pei X, Wu B, Li Z Y. Fatigue crack propagation analysis of plaque rupture. J Biomech Eng, 2013, 135(10): 101003-101009.
|
26. |
裴璇. 动脉粥样硬化斑块破坏的生物力学研究. 南京: 东南大学, 2016.
|
27. |
Rezvani-Sharif A, Tafazzoli-Shadpour M, Kazemi-Saleh D, et al. Stress analysis of fracture of atherosclerotic plaques: crack propagation modeling. Med Biol Eng Comput, 2017, 55(8): 1389-1400.
|
28. |
Versluis A, Bank A J, Douglas W H. Fatigue and plaque rupture in myocardial infarction. J Biomech, 2006, 39(2): 339-347.
|
29. |
Babaniamansour P, Mohammadi M, Babaniamansour S, et al. The relation between atherosclerosis plaque composition and plaque rupture. J Med Signals Sens, 2020, 10(4): 267-273.
|
30. |
Holzapfel G A, Sommer G, Gasser C T, et al. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Physiol Heart Circ Physiol, 2005, 289(5): 2048-2058.
|
31. |
Hutchinson J W. Singular behavior at the end of a tensile crack in a hardening material. J Mech Phys Solids, 1968, 16(1): 13-31.
|
32. |
Holzapfel G A, Mulvihill J J, Cunnane E M. Computational approaches for analyzing the mechanics of atherosclerotic plaques: a review. J Biomech, 2014, 47(4): 859-869.
|
33. |
Speelman L, Bosboom E M, Schurink G W, et al. Patient-specific AAA wall stress analysis: 99-percentile versus peak stress. Eur J Vasc Endovasc Surg, 2008, 36(6): 668-676.
|
34. |
Finet, G, Ohayon J, Rioufol G. Biomechanical interaction between cap thickness, lipid core composition and blood pressure in vulnerable coronary plaque: impact on stability or instability. Coronary Artery Disease, 2004, 15(1): 13-20.
|
35. |
Albert M A, Danielson E, Rifai N, et al. Effect of statin therapy on C-reactive protein levels: the pravastatin inflammation/CRP evaluation(PRINCE): a randomized trial and cohort study. JAMA, 2001, 286(1): 64-70.
|