1. |
Cho N H, Shaw J E, Karuranga S, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract, 2018, 138: 271-281.
|
2. |
Haneda S, Yamashita H. International clinical diabetic retinopathy disease severity scale. Nihon rinsho. Japanese Journal of Clinical Medicine, 2010, 68: 228-235.
|
3. |
Cunha L P, Figueiredo E A, Araújo H P, et al. Non-mydriatic fundus retinography in screening for diabetic retinopathy: agreement between family physicians, general ophthalmologists, and a retinal specialist. Frontiers in endocrinology, 2018, 9: 251.
|
4. |
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 2016, 316(22): 2402-2410.
|
5. |
Pratt H, Coenen F, Broadbent D M, et al. Convolutional neural networks for diabetic retinopathy. Procedia computer science, 2016, 90: 200-205.
|
6. |
Zhou K, Gu Z, Liu W, et al. Multi-cell multi-task convolutional neural networks for diabetic retinopathy grading//The 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018: 2724-2727.
|
7. |
Ren F, Cao P, Zhao D, et al. Diabetic macular edema grading in retinal images using vector quantization and semi-supervised learning. Technol Health Care, 2018, 26(S1): 389-397.
|
8. |
Girard F, Kavalec C, Cheriet F. Joint segmentation and classification of retinal arteries/veins from fundus images. Artif Intell Med, 2019, 94: 96-109.
|
9. |
Mahiba C, Jayachandran A. Severity analysis of diabetic retinopathy in retinal images using hybrid structure descriptor and modified CNNs. Measurement, 2019, 135: 762-767.
|
10. |
Porwal P, Pachade S, Kamble R, et al. Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy screening research. Data, 2018, 3(3): 25.
|
11. |
Decencière E, Zhang X, Cazuguel G, et al. Feedback on a publicly distributed image database: the Messidor database. Image Analysis & Stereology, 2014, 33(3): 231-234.
|
12. |
Wilkinson C P, Ferris F L, Klein R E, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology, 2003, 110(9): 1677-1682.
|
13. |
Sánchez C I, Niemeijer M, Dumitrescu A V, et al. Evaluation of a computer-aided diagnosis system for diabetic retinopathy screening on public data. Invest Ophthalmol Vis Sci, 2011, 52(7): 4866-4871.
|
14. |
Wang Z, Yin Y, Shi J, et al. Zoom-in-net: deep mining lesions for diabetic retinopathy detection//International Conference on Medical Image Computing and Computer-Assisted Intervention, Cham: Springer, 2017: 267-275.
|
15. |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Utah: IEEE, 2018: 7132-7141.
|
16. |
Xie S, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1492-1500.
|
17. |
Yu C, Zhao X, Zheng Q, et al. Hierarchical bilinear pooling for fine-grained visual recognition//Proceedings of the European Conference on Computer Vision (ECCV), München: Springer, 2018: 574-589.
|
18. |
Qian Q, Shang L, Sun B, et al. Softtriple loss: deep metric learning without triplet sampling//Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul: IEEE, 2019: 6450-6458.
|
19. |
Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection long//Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988.
|
20. |
Karras T, Aila T, Laine S, et al. Progressive growing of gans for improved quality, stability, and variation. arXiv: 1710.10196, 2017. https://doi.org/10.48550/arXiv.1710.10196.
|
21. |
Wei C, Xie L, Ren X, et al. Iterative reorganization with weak spatial constraints: solving arbitrary jigsaw puzzles for unsupervised representation learning//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach: IEEE, 2019: 1910-1919.
|
22. |
Chen Y, Bai Y, Zhang W, et al. Destruction and construction learning for fine-grained image recognition//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach: IEEE, 2019: 5157-5166.
|
23. |
Smith L N. Cyclical learning rates for training neural networks//2017 IEEE winter conference on applications of computer vision (WACV), Nevada: IEEE, 2017: 464-472.
|
24. |
Wang Y, Morariu V I, Davis L S. Learning a discriminative filter bank within a CNN for fine-grained recognition//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Utah: IEEE, 2018: 4148-4157.
|
25. |
Du R , Chang D , Bhunia A K , et al. Fine-grained visual classification via progressive multi-granularity training of jigsaw patches//European Conference on Computer Vision (ECCV 2020), Glasgow: ECCV, 2020.
|
26. |
Porwal P, Pachade S, Kokare M, et al. IDRiD: diabetic retinopathy-segmentation and grading challenge. Med Image Anal, 2020, 59: 101561.
|
27. |
Tian L, Ma L, Wen Z, et al. Learning discriminative representations for fine-grained diabetic retinopathy grading//2021 International Joint Conference on Neural Networks (IJCNN), Padua: IEEE, 2021: 1-8.
|
28. |
Voets M, Møllersen K, Bongo L A. Reproduction study using public data of: development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. PLoS One, 2019, 14(6): e0217541.
|
29. |
Toledo-Cortés S, de la Pava M, Perdómo O, et al. Hybrid deep learning gaussian process for diabetic retinopathy diagnosis and uncertainty quantification// 7th International Workshop on Ophthalmic Medical Image Analysis (OMIA 2020). Lima, Peru: OMIA and MICCAI, 2020: 206-215.
|