1. |
Swetter S M, Tsao H, Bichakjian C K, et al. Guidelines of care for the management of primary cutaneous melanoma. J Am Acad Dermatol, 2019, 80(1): 208-250.
|
2. |
Schadendorf D, van Akkooi A C J, Berking C, et al. Melanoma. Lancet, 2018, 392(10151): 971-984.
|
3. |
Piepkorn M W, Barnhill R L, Elder D E, et al. The MPATH-Dx reporting schema for melanocytic proliferations and melanoma. J Am Acad Dermatol, 2014, 70(1): 131-141.
|
4. |
Davis L E, Shalin S C, Tackett A J. Current state of melanoma diagnosis and treatment. Cancer Biol Ther, 2019, 20(11): 1366-1379.
|
5. |
The Skin Cancer Foundation. Skin cancer facts & statistics, 2021 (2022-05) [2022-07-04]. https: //www.skincancer.org/skin-cancer-information/skin-cancer-facts.
|
6. |
Haggenmüller S, Maron R C, Hekler A, et al. Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts. Eur J Cancer Care, 2021, 156: 202-216.
|
7. |
Rocha L K F L, Vilain R E, Scolyer R A, et al. Confocal microscopy, dermoscopy, and histopathology features of atypical intraepidermal melanocytic proliferations associated with evolution to melanoma in situ. Int J Dermatol, 2022, 61(2): 167-174.
|
8. |
Jitian Mihulecea C-R, Frățilă S, Rotaru M. Clinical-dermoscopic similarities between atypical nevi and early stage melanoma. Exp Ther Med, 2021, 22(2): 854-854.
|
9. |
Lodha S, Saggar S, Celebi J T, et al. Discordance in the histopathologic diagnosis of difficult melanocytic neoplasms in the clinical setting. J Cutan Pathol, 2008, 35(4): 349-352.
|
10. |
Ronen S, Al-Rohil R N, Keiser E, et al. Discordance in diagnosis of melanocytic lesions and its impact on clinical management. Arch Pathol Lab Med, 2021, 145(12): 1505-1515.
|
11. |
Tolkach Y, Dohmgörgen T, Toma M, et al. High-accuracy prostate cancer pathology using deep learning. Nat Mach Intell, 2020, 2(7): 411-418.
|
12. |
Coudray N, Ocampo P S, Sakellaropoulos T, et al. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat Med, 2018, 24(10): 1559-1567.
|
13. |
Bera K, Schalper K A, Rimm D L, et al. Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology. Nat Rev Clin Oncol, 2019, 16(11): 703-715.
|
14. |
Rakhlin A, Shvets A, Iglovikov V, et al. Deep convolutional neural networks for breast cancer histology image analysis// Campilho A, Karray F, ter Haar Romeny B. Image Analysis and Recognition. ICIAR 2018. Lecture Notes in Computer Science. Cham: Springer, 2018, 10882: 737-744.
|
15. |
韩继能, 谢嘉伟, 顾松, 等. 基于全景病理图像细胞密度和异型特征的胶质瘤自动分级. 生物医学工程学杂志, 2021, 38(6): 1062-1071.
|
16. |
王荃, 沈勤, 张泽林, 等. 基于深度学习和组织形态分析的肺癌基因突变预测. 生物医学工程学杂志, 2020, 37(1): 10-18.
|
17. |
Hekler A, Utikal J S, Enk A H, et al. Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images. Eur J Cancer Care, 2019, 118: 91-96.
|
18. |
Hekler A, Utikal J S, Enk A H, et al. Pathologist-level classification of histopathological melanoma images with deep neural networks. Eur J Cancer Care, 2019, 115: 79-83.
|
19. |
Brinker T J, Schmitt M, Krieghoff-Henning E I, et al. Diagnostic performance of artificial intelligence for histologic melanoma recognition compared to 18 international expert pathologists. J Am Acad Dermatol, 2022, 86(3): 640-642.
|
20. |
Li T, Li F, Zuo K. Pathologist-Level classification of melanoma disease pathologies using a convolutional neural network: A retrospective study of Chinese// Yao J, Xiao Y, You P, et al. The International Conference on Image, Vision and Intelligent Systems (ICIVIS 2021). Lecture Notes in Electrical Engineering. Singapore: Springer, 2022, 813: 833-839.
|
21. |
Bejnordi B E, Litjens G, Timofeeva N, et al. Stain specific standardization of whole-slide histopathological images. IEEE Trans on Med Imag, 2016, 35(2): 404-415.
|
22. |
Howard F M, Dolezal J, Kochanny S, et al. The impact of site-specific digital histology signatures on deep learning model accuracy and bias. Nat Commun, 2021, 12(1): 4423.
|
23. |
Stiff K M, Franklin M J, Zhou Y, et al. Artificial intelligence and melanoma: A comprehensive review of clinical, dermoscopic, and histologic applications. Pigment Cell Melanoma Res, 2022, 35(2): 203-211.
|
24. |
Ianni J D, Soans R E, Sankarapandian S, et al. Tailored for real-world: A whole slide image classification system validated on uncurated multi-site data emulating the prospective pathology workload. Sci Rep, 2020, 10(1): 3217.
|
25. |
Shaban M T, Baur C, Navab N, et al. Staingan: Stain style transfer for digital histological images// 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI). Venice: IEEE, 2019: 953-956.
|
26. |
Zhu J Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks// IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 2223-2232.
|
27. |
Ruifrok A C, Johnston D A. Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol, 2001, 23(4): 291-299.
|
28. |
Vahadane A, Peng T, Sethi A, et al. Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans on Med Imag, 2016, 35(8): 1962-1971.
|
29. |
张术昌, 袁梓洋, 王红霞, 等. 面向组织病理学图像的颜色迁移算法. 计算机辅助设计与图形学学报, 2020, 32(12): 1890-1897.
|
30. |
卞殷旭, 邢涛, 邓伟杰, 等. 基于深度学习的色彩迁移生物医学成像技术. 红外与激光工程, 2022, 51(2): 339-356.
|
31. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778.
|
32. |
周涛, 刘赟璨, 陆惠玲, 等. ResNet及其在医学图像处理领域的应用:研究进展与挑战. 电子与信息学报, 2022, 44(1): 149-167.
|
33. |
Höhn J, Krieghoff-Henning E, Jutzi T B, et al. Combining CNN-based histologic whole slide image analysis and patient data to improve skin cancer classification. Eur J Cancer Care, 2021, 149: 94-101.
|
34. |
Reinhard E, Adhikhmin M, Gooch B, et al. Color transfer between images. IEEE Comput Graph Appl, 2001, 21(5): 34-41.
|