1. |
Kasianowicz J J, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci U S A, 1996, 93(24): 13770-13773.
|
2. |
Venkatesan B M, Bashir R. Nanopore sensors for nucleic acid analysis. Nat Nanotechnol, 2011, 6(10): 615-624.
|
3. |
Ying Y L, Cao C, Long Y T. Single molecule analysis by biological nanopore sensors. Analyst, 2014, 139(16): 3826-3835.
|
4. |
Wang Y, Patil K M, Yan S, et al. Nanopore sequencing accurately identifies the mutagenic DNA lesion O6—carboxymethyl guanine and reveals its behavior in replication. Angewandte Chemie International Edition, 2019, 58(25): 8432-8436.
|
5. |
Henley R Y, Ashcroft B, Farrell I, et al. Electrophoretic deformation of individual transfer RNA molecules reveals their identity. Nano Lett, 2016, 16(1): 138-144.
|
6. |
Smith A M, Abu-Shumays R, Akeson M, et al. Capture, unfolding, and detection of individual tRNA molecules using a nanopore device. Front Bioeng Biotechnol, 2015, 3: 91.
|
7. |
Zhang X, Xu X, Yang Z, et al. Mimicking ribosomal unfolding of RNA pseudoknot in a protein channel. J Am Chem Soc, 2015, 137(50): 15742-15752.
|
8. |
Zhang X, Zhang D, Zhao C, et al. Nanopore electric snapshots of an RNA tertiary folding pathway. Nat Commun, 2017, 8(1): 1458.
|
9. |
Krause M, Niazi A M, Labun K, et al. Tailfindr: alignment-free poly(A) length measurement for Oxford nanopore RNA and DNA sequencing. RNA, 2019, 25(10): 1229-1241.
|
10. |
Simpson J T, Workman R E, Zuzarte P C, et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods, 2017, 14(4): 407-410.
|
11. |
Carral A D, Sarap C S, Liu K, et al. 2D MoS2 nanopores: ionic current blockade height for clustering DNA events. 2D Mater, 2019, 6(4): 045011.
|
12. |
Farshad M, Rasaiah J C. Molecular dynamics simulation study of transverse and longitudinal ionic currents in solid-state nanopore DNA sequencing. ACS Appl Nano Mater, 2020, 3(2): 1438-1447.
|
13. |
Jia Shen, Luo Haochen, Gao Qiheng, et al. Detection of m6A RNA methylation in nanopore sequencing data using support vector machine//2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Suzhou: IEEE, 2019: 1-5.
|
14. |
Schreiber J, Karplus K. Analysis of nanopore data using hidden Markov models. Bioinformatics, 2015, 31(12): 1897-1903.
|
15. |
Liu H, Begik O, Lucas M C, et al. Accurate detection of m(6)A RNA modifications in native RNA sequences. Nat Commun, 2019, 10(1): 4079.
|
16. |
Ni P, Huang N, Zhang Z, et al. DeepSignal: detecting DNA methylation state from nanopore sequencing reads using deep-learning. Bioinformatics, 2019, 35(22): 4586-4595.
|
17. |
Stoiber M, Quick J, Egan R, et al. De novo identification of DNA modifications enabled by genome-guided nanopore signal processing. BioRxiv, 2016: 094672.
|
18. |
Alpaydin E, Bishop C M. Introduction to machine learning. MIT press, 2014.
|
19. |
Caruana R, Niculescu-Mizil A. An empirical comparison of supervised learning algorithms//Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh: ACM, 2006: 161-168.
|
20. |
Michie D, Spiegelhalter D J, Taylor C C. Machine learning, neural and statistical classification. Journal of the American Statistical Association, 1994, 91(433): 2291432.
|
21. |
Riedmiller M. Advanced supervised learning in multi-layer perceptrons-from backpropagation to adaptive learning algorithms. Computer Standards & Interfaces, 1994, 16(3): 265-278.
|
22. |
Xu R, Wunsch II D C. Clustering. IEEE Computational Intelligence Magazine, 2009, 4(3): 92-95.
|
23. |
Macqueen J. Some methods for classification and analysis of multivariate observations//Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: Univ of California Press, 1967, 1(14): 281-297.
|
24. |
Ester M, Kriegel H P, Sander J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise//Proceedings of the second international conference on knowledge discovery and data mining, Oregon: ACM, 1996, 96(34): 226-231.
|
25. |
Cheng Y. Mean shift, mode seeking, and clustering. IEEE Trans Pattern Anal Mach Intell, 1995, 17(8): 790-799.
|
26. |
Kurita T. An efficient agglomerative clustering algorithm using a heap. Pattern Recognit, 1991, 24(3): 205-209.
|
27. |
Ng A Y, Jordan M I, Weiss Y. On spectral clustering: analysis and an algorithm. Advances in Neural Information Processing Systems, 2002, 2: 849-856.
|
28. |
Le Q V. Building high-level features using large scale unsupervised learning//2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver: IEEE, 2013: 8595-8598.
|
29. |
Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. Journal of machine learning research, 2010, 11: 3371-3408.
|
30. |
Johnson D H, Sinanovic S. Symmetrizing the kullback-leibler distance. IEEE Transactions on Information Theory, 2001: 14941762.
|
31. |
Lv Yisheng, Duan Yanjie, Kang Wenwen, et al. Traffic flow prediction with big data: a deep learning approach. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 865-873.
|
32. |
Bengio Y, Lamblin P, Popovici D, et al. Greedy layer-wise training of deep networks//Advances in Neural Information Processing Systems, Vancouver: MIT Press, 2007: 153-160.
|
33. |
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504-507.
|
34. |
Srivastava N, Hinton G, Krizhevsky A, et al. Dropout:a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
|
35. |
Nair V, Hinton G E. Rectified linear units improve restricted boltzmann machines//Proceedings of the 27rd international conference on machine learning, Haifa: ACM, 2010.
|
36. |
Peng X, Xiao S, Feng J, et al. Deep subspace clustering with sparsity prior//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, New York: Morgan Kaufmann, 2016: 1925-1931.
|
37. |
Lecun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436-444.
|
38. |
Steinley D. Properties of the Hubert-Arable adjusted rand index. Psychol Methods, 2004, 9(3): 386.
|
39. |
Fleiss J L, Cohen J, Everitt B S. Large sample standard errors of kappa and weighted kappa. Psychol Bull, 1969, 72(5): 323.
|
40. |
Timofeev R. Classification and regression trees (CART) theory and applications. Humboldt University, Berlin, 2004: 1-40.
|
41. |
Suykens J , Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett, 1999, 9(3): 293-300.
|
42. |
Freund Y, Schapire R E. Experiments with a new boosting algorithm//Proceedings of the 13rd international conference on machine learning, Bari: ACM, 1996, 96: 148-156.
|
43. |
Liaw A, Wiener M. Classification and regression by randomForest. R news, 2002, 2(3): 18-22.
|