1. |
Miskolci V, Klemm L C, Huttenlocher A. Cell migration guided by cell–cell contacts in innate immunity. Trends Cell Biol, 2021, 31(2): 86-94.
|
2. |
Kameritsch P, Renkawitz J. Principles of leukocyte migration strategies. Trends Cell Biol, 2020, 30(10): 818-832.
|
3. |
Vasudevan J, Lim C T, Fernandez J G. Cell migration and breast cancer metastasis in biomimetic extracellular matrices with independently tunable stiffness. Adv Funct Mater, 2020, 30(49): 2005383.
|
4. |
Hopke A, Scherer A, Kreuzburg S, et al. Neutrophil swarming delays the growth of clusters of pathogenic fungi. Nat Commun, 2020, 11(1): 2031.
|
5. |
Garcia-Seyda N, Aoun L, Tishkova V, et al. Microfluidic device to study flow-free chemotaxis of swimming cells. Lab Chip, 2020, 20(9): 1639-1647.
|
6. |
Ren X, Getschman A E, Hwang S, et al. Investigations on T cell transmigration in a human skin-on-chip (SoC) model. Lab Chip, 2021, 21(8): 1527-1539.
|
7. |
Zheng L, Wang B, Sun Y, et al. An oxygen-concentration-controllable multiorgan microfluidic platform for studying hypoxia-induced lung cancer-liver metastasis and screening drugs. ACS Sensors, 2021, 6(3): 823-832.
|
8. |
Ge Y, An Q, Gao Y, et al. A microfluidic device for generation of chemical gradients. Micosyst Technol, 2015, 21(8): 1797-1804.
|
9. |
Wu J, Hillier C, Komenda P, et al. A microfluidic platform for evaluating neutrophil chemotaxis induced by sputum from COPD patients. Plos One, 2015, 10(5): e0126523.
|
10. |
Satti S, Deng P, Matthews K, et al. Multiplexed end-point microfluidic chemotaxis assay using centrifugal alignment. Lab Chip, 2020, 20(17): 3096-3103.
|
11. |
Yang K, Peretz-soroka H, Wu J D, et al. Fibroblast growth factor 23 weakens chemotaxis of human blood neutrophils in microfluidic devices. Sci Rep, 2017, 7: 3100.
|
12. |
Yang K, Wu J, Peretz-soroka H, et al. M-kit: A cell migration assay based on microfluidic device and smartphone. Biosens Bioelectron, 2018, 99: 259-267.
|
13. |
Yang K, Wu J, Santos S, et al. Recent development of portable imaging platforms for cell-based assays. Biosens Bioelectron, 2019, 124: 150-160.
|
14. |
Yan Y, Zhang B, Fu Q, et al. A fully integrated biomimetic microfluidic device for evaluation of sperm response to thermotaxis and chemotaxis. Lab Chip, 2021, 21(2): 310-318.
|
15. |
Ellett F, Jalali F, Marand A L, et al. Microfluidic arenas for war games between neutrophils and microbes. Lab Chip, 2019, 19(7): 1205-1216.
|
16. |
Arriodupont M, Cribier S, Foucauly G, et al. Diffusion of fluorescently labeled macromolecules in cultured muscle cells. Biophys J, 1996, 70(5): 2327-2332.
|
17. |
Grigolato F, Egholm C, Impellizzieri D, et al. Establishment of a scalable microfluidic assay for characterization of population-based neutrophil chemotaxis. Allergy, 2020, 75(6): 1382-1393.
|
18. |
Collison K S, ParharR S, Saleh S S, et al. RAGE-mediated neutrophil dysfunction is evoked by advanced glycation end products (AGEs). J Leukocyte Biol, 2002, 71(3): 433-444.
|
19. |
Makita Z, Vlassara H, Cerami A, et al. Immunochemical detection of advanced glycosylation end products in vivo. J Biol Chem, 1992, 267(8): 5133-5138.
|
20. |
Gao Y, Sun J, Lin W H, et al. A compact microfluidic gradient generator using passive pumping. Microfluid Nanofluid, 2012, 12(6): 887-895.
|
21. |
Davies P F. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med, 2009, 6(1): 16-26.
|
22. |
Dewey C F, Bussolari S R, Gimbrone M A, et al. The dynamic-response of vascular endothelial-cells to fluid share-stress. J Biomech Eng-T Asme, 1981, 103(3): 177-185.
|
23. |
Zhao W, Zhao H, Li M, et al. Microfluidic devices for neutrophil chemotaxis studies. J Transl Med, 2020, 18(1): 168.
|
24. |
Touré F, Zahm J M, Garnotel R, et al. Receptor for advanced glycation end-products (RAGE) modulates neutrophil adhesion and migration on glycoxidated extracellular matrix. Biochem J, 2008, 416(2): 255-261.
|
25. |
Schetz P, Castro P, Shapiro N I. Diabetes and sepsis: preclinical findings and clinical relevance. Diabetes Care, 2011, 34(3): 771-778.
|
26. |
Advani A, Marshall S M, Thomas T H. Impaired neutrophil store-mediated calcium entry in Type 2 diabetes. Eur J Clin Invest, 2004, 34(1): 43-49.
|
27. |
Wang X, Liu J, Yang Y, et al. An update on the potential role of advanced glycation end products in glycolipid metabolism. Life Sci, 2020, 245: 117344.
|
28. |
Spadaccio C, De Marco F, Di Domenico F, et al. Simvastatin attenuates the endothelial pro-thrombotic shift in saphenous vein grafts induced by advanced glycation endproducts. Thromb Res, 2014, 133(3): 418-425.
|