1. |
Mohanty S P, Choppali U, Kougianos E. Everything you wanted to know about smart cities:the Internet of things is the backbone. IEEE Consumer Electronics Magazine, 2016, 5(3): 60-70.
|
2. |
Zhao D W, Zhu Y, Cheng W K, et al. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv Mater, 2021, 33(28): e2000619.
|
3. |
Thomas B, Raj M C, Athira K B, et al. Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev, 2018, 118(24): 11575-11625.
|
4. |
Jian Muqiang, Zhang Yingying, Liu Zhongfan. Natural biopolymers for flexible sensing and energy devices. Chinese Journal of Polymer Science, 2020, 38(5): 459-490.
|
5. |
Lazarini S C, de Aquino R, Amaral A C, et al. Characterization of bilayer bacterial cellulose membranes with different fiber densities: a promising system for controlled release of the antibiotic ceftriaxone. Cellulose, 2016, 23(1): 737-748.
|
6. |
Wang C, Yokota T, Someya T. Natural biopolymer-based biocompatible conductors for stretchable bioelectronics. Chem Rev, 2021, 121(4): 2109-2146.
|
7. |
Klemm D, Kramer F, Moritz S, et al. Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl, 2011, 50(24): 5438-5466.
|
8. |
Moon R J, Martini A, Nairn J, et al. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev, 2011, 40(7): 3941-3994.
|
9. |
Eichhorn S J, Dufresne A, Aranguren M, et al. Review: current international research into cellulose nanofibers and nanocomposites. J Mater Sci, 2010, 45(1): 1-33.
|
10. |
Thakur V, Guleria A, Kumar S, et al. Recent advances in nanocellulose processing, functionalization and applications: a review. Mater Adv, 2021, 2(8): 1872-1895.
|
11. |
Tu H, Zhu M, Duan B, et al. Recent progress in high-strength and robust regenerated cellulose materials. Adv Mater, 2021, 33(28): e2000682.
|
12. |
Ngwabebhoh F A, Yildiz U. Nature‐derived fibrous nanomaterial toward biomedicine and environmental remediation: today's state and future prospects. J Appl Polym Sci, 2019, 136(35): 47878.
|
13. |
Zhang J, Seyedin S, Gu Z J, et al. MXene: a potential candidate for yarn supercapacitors. Nanoscale, 2017, 9(47): 18604-18608.
|
14. |
Uzun S, Seyedin S, Stoltzfus A L, et al. Knittable and washable multifunctional MXene‐coated cellulose yarns. Adv Funct Mater, 2019, 29(45): 1905015.
|
15. |
Ghaffari R, Rogers J A, Ray T R. Recent progress, challenges, and opportunities for wearable biochemical sensors for sweat analysis. Sens Actuators B Chem, 2021, 332: 129447.
|
16. |
Promphet N, Hinestroza J P, Rattanawaleedirojn P, et al. Cotton thread-based wearable sensor for non-invasive simultaneous diagnosis of diabetes and kidney failure. Sens Actuators B Chem, 2020, 321: 128549.
|
17. |
Teng Y C, Wei J, Du H B, et al. A solar and thermal multi-sensing microfiber supercapacitor with intelligent self-conditioned capacitance and body temperature monitoring. J Mater Chem A, 2020, 8(23): 11695-11711.
|
18. |
Jing C, Liu W, Hao H, et al. Regenerated and rotation-induced cellulose-wrapped oriented CNT fibers for wearable multifunctional sensors. Nanoscale, 2020, 12(30): 16305-16314.
|
19. |
Cai G, Hao B W, Luo L, et al. Highly stretchable Sheath-core yarns for multifunctional wearable electronics. ACS Appl Mater Interfaces, 2020, 12(26): 29717-29727.
|
20. |
Lukatskaya M R, Kota S, Lin Z, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat Energy, 2017, 2(8): 17105.
|
21. |
Cao W T, Ma C, Mao D S, et al. MXene‐reinforced cellulose nanofibril inks for 3D‐printed smart fibres and textiles. Adv Funct Mater, 2019, 29(51): 1905898.
|
22. |
Dai L, Wang Y, Zou X, et al. Ultrasensitive physical, bio, and chemical sensors derived from 1-, 2-, and 3-D nanocellulosic materials. Small, 2020, 16(13): e1906567.
|
23. |
Ahankari S S, Subhedar A R, Bhadauria S S, et al. Nanocellulose in food packaging: a review. Carbohydr Polym, 2021, 255: 117479.
|
24. |
Jung M, Kim K, Kim B, et al. Vertically stacked nanocellulose tactile sensor. Nanoscale, 2017, 9(44): 17212-17219.
|
25. |
Rösing C K, Loesche W. Halitosis: an overview of epidemiology, etiology and clinical management. Braz Oral Res, 2011, 25(5): 466-471.
|
26. |
Abdel Rahman N S, Greish Y E, Mahmoud S T, et al. Fabrication and characterization of cellulose acetate-based nanofibers and nanofilms for H2S gas sensing application. Carbohydr Polym, 2021, 258: 117643.
|
27. |
Matzeu G, Florea L, Diamond D. Advances in wearable chemical sensor design for monitoring biological fluids. Sens Actuator B Chem, 2015, 211: 403-418.
|
28. |
Gomes N O, Carrilho E, Machado S A S, et al. Bacterial cellulose-based electrochemical sensing platform: a smart material for miniaturized biosensors. Electrochim Acta, 2020, 349: 136341.
|
29. |
Kim J W, Park H, Lee G, et al. Paper‐like, thin, foldable, and self‐healable electronics based on PVA/CNC nanocomposite film. Adv Funct Mater, 2019, 29(50): 1905968.
|
30. |
Wang Y, Zhang L, Zhou J, et al. Flexible and transparent cellulose-based ionic film as a humidity sensor. ACS Appl Mater Interfaces, 2020, 12(6): 7631-7638.
|
31. |
Han L, Cui S, Yu H Y, et al. Self-healable conductive nanocellulose nanocomposites for biocompatible electronic skin sensor systems. ACS Appl Mater Interfaces, 2019, 11(47): 44642-44651.
|
32. |
Peng Q Y, Chen J S, Wang T, et al. Recent advances in designing conductive hydrogels for flexible electronics. InfoMat, 2020, 2(5): 843-856.
|
33. |
Han J Q, Wang H X, Yue Y Y, et al. A self-healable and highly flexible supercapacitor integrated by dynamically cross-linked electro-conductive hydrogels based on nanocellulose-templated carbon nanotubes embedded in a viscoelastic polymer network. Carbon, 2019, 149: 1-18.
|
34. |
Xu X Z, Hsieh Y L. Aqueous exfoliated graphene by amphiphilic nanocellulose and its application in moisture-responsive foldable actuators. Nanoscale, 2019, 11(24): 11719-11729.
|
35. |
Chen C, Qing J F, Lei M, et al. Recent progress in natural biopolymers conductive hydrogels for flexible wearable sensors and energy devices: materials, structures, and performance. ACS Appl Bio Mater, 2021, 4(1): 85-121.
|
36. |
Wang M, Li R N, Feng X, et al. Cellulose nanofiber-reinforced ionic conductors for multifunctional sensors and devices. ACS Appl Mater Interfaces, 2020, 12(24): 27545-27554.
|
37. |
Kang J. Tok J B-H, Bao Z N. Self-healing soft electronics. Nat Electron, 2019, 2(4): 144-150.
|
38. |
Deng Z X, Wang H, Ma P X, et al. Self-healing conductive hydrogels: preparation, properties and applications. Nanoscale, 2020, 12(3): 1224-1246.
|
39. |
Xu J H, Chen W, Wang C, et al. Extremely stretchable, self-healable elastomers with tunable mechanical properties: synthesis and applications. Chem Mater, 2018, 30(17): 6026-6039.
|
40. |
Ye Y H, Zhang Y F, Chen Y, et al. Cellulose nanofibrils enhanced, strong, stretchable, freezing‐tolerant ionic conductive organohydrogel for multi‐functional sensors. Adv Funct Mater, 2020, 30(35): 2003430.
|
41. |
Zhou Z X, Qian C H, Yuan W Z. Self-healing, anti-freezing, adhesive and remoldable hydrogel sensor with ion-liquid metal dual conductivity for biomimetic skin. Compos Sci Technol, 2021, 203: 108608.
|
42. |
Shao C Y, Wang M, Meng L, et al. Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties. Chem Mater, 2018, 30(9): 3110-3121.
|
43. |
Song M L, Yu H Y, Zhu J Y, et al. Constructing stimuli-free self-healing, robust and ultrasensitive biocompatible hydrogel sensors with conductive cellulose nanocrystals. Chem Eng J, 2020, 398: 125547.
|
44. |
Wang S, Xiang J, Sun Y, et al. Skin-inspired nanofibrillated cellulose-reinforced hydrogels with high mechanical strength, long-term antibacterial, and self-recovery ability for wearable strain/pressure sensors. Carbohydr Polym, 2021, 261: 117894.
|
45. |
Chang H, Kim S, Kang T H, et al. Wearable piezoresistive sensors with ultrawide pressure range and circuit compatibility based on conductive-island-bridging nanonetworks. ACS Appl Mater Interfaces, 2019, 11(35): 32291-32300.
|