1. |
陈少华. 人格心理学. 广州: 暨南大学出版社, 2010.
|
2. |
Eysenck H J, Eysenck S B G. Manual of the Eysenck personality questionnaire. Londa: Hodder and Stoughton Educational, 1975.
|
3. |
Yang J, McCrae R R, Costa P T Jr, et al. Cross-cultural personality assessment in psychiatric populations: the NEO-PI-R in the People's Republic of China. Psychol Assess, 1999, 11(3): 359-368.
|
4. |
Ashton M C, Lee K, Perugini M, et al. A six-factor structure of personality-descriptive adjectives: solutions from psycholexical studies in seven languages. J Pers Soc Psychol, 2004, 86(2): 356-366.
|
5. |
Cloninger C R, Svrakic D M, Przybeck T R. A psychobiological model of temperament and character. Arch Gen Psychiat, 1993, 50(12): 975-990.
|
6. |
Conte H R, Plutchik R. A circumplex model for interpersonal personality traits. J Pers Soc Psychol, 1981, 40(4): 701-711.
|
7. |
Vinciarelli A, Mohammadi G. A survey of personality computing. IEEE T Affect Comput, 2014, 5(3): 273-291.
|
8. |
Compton W C. Measures of mental health and a five factor theory of personality. Psychol Rep, 1998, 83(1): 371-381.
|
9. |
Noftle E E, Shaver P R. Attachment dimensions and the big five personality traits: associations and comparative ability to predict relationship quality. J Res Pers, 2006, 40(2): 179-208.
|
10. |
Komarraju M, Karau S J, Schmeck R R, et al. The big five personality traits, learning styles, and academic achievement. Pers Indiv Differ, 2011, 51(4): 472-477.
|
11. |
Judge T A, Higgins C A, Thoresen C J, et al. The big five personality traits, general mental ability, and career success across the life span. Pers Psychol, 1999, 52(3): 621-652.
|
12. |
Li W, Hu X, Long X, et al. EEG responses to emotional videos can quantitatively predict big-five personality traits. Neurocomputing, 2020, 415: 368-381.
|
13. |
Costa P T Jr, McCrae R R. Domains and facets: hierarchical personality assessment using the revised NEO personality inventory. J Pers Assess, 1995, 64(1): 21-50.
|
14. |
McCrae R R, Costa P T Jr. A contemplated revision of the NEO five-factor inventory. Pers Indiv Differ, 2004, 36(3): 587-596.
|
15. |
Furnham A, Forde L, Cotter T. Personality scores and test taking style. Pers Indiv Differ, 1998, 24(1): 19-23.
|
16. |
李文钰. 基于情绪脑电影响的大五人格测量方法研究. 北京: 清华大学, 2019.
|
17. |
Youyou W, Kosinski M, Stillwell D. Computer-based personality judgments are more accurate than those made by humans. Proc Natl Acad Sci USA, 2015, 112(4): 1036-1040.
|
18. |
Jacques Junior J C S, Güçlütürk Y, Pérez M, et al. First impressions: a survey on vision-based apparent personality trait analysis. IEEE T Affect Comput, 2019, 13(1): 75-95.
|
19. |
Hoppe S, Loetscher T, Morey S A, et al. Eye movements during everyday behavior predict personality traits. Front Hum Neurosci, 2018, 12: 105.
|
20. |
Privado J, Román F J, Saénz-Urturi C, et al. Gray and white matter correlates of the big five personality traits. Neuroscience, 2017, 349: 174-184.
|
21. |
Coutinho J F, Sampaio A, Ferreira M, et al. Brain correlates of pro-social personality traits: a voxel-based morphometry study. Brain Imaging Behav, 2013, 7(3): 293-299.
|
22. |
Bjørnebekk A, Fjell A M, Walhovd K B, et al. Neuronal correlates of the five factor model (FFM) of human personality: multimodal imaging in a large healthy sample. Neuroimage, 2013, 65: 194-208.
|
23. |
DeYoung C G, Hirsh J B, Shane M S, et al. Testing predictions from personality neuroscience: brain structure and the big five. Psychol Sci, 2010, 21(6): 820-828.
|
24. |
Riccelli R, Toschi N, Nigro S, et al. Surface-based morphometry reveals the neuroanatomical basis of the five-factor model of personality. Soc Cogn Affect Neur, 2017, 12(4): 671-684.
|
25. |
Li W, Wu C, Hu X, et al. Quantitative personality predictions from a brief EEG recording. IEEE T Affect Comput, 2020. DOI: 10.1109/TAFFC.2020.3008775.
|
26. |
Klados M A, Konstantinidi P, Dacosta-Aguayo R, et al. Automatic recognition of personality profiles using EEG functional connectivity during emotional processing. Brain Sci, 2020, 10(5): 278.
|
27. |
Subramanian R, Wache J, Abadi M K, et al. ASCERTAIN: emotion and personality recognition using commercial sensors. IEEE T Affect Comput, 2016, 9(2): 147-160.
|
28. |
Zhao G, Ge Y, Shen B, et al. Emotion analysis for personality inference from EEG signals. IEEE T Affect Comput, 2017, 9(3): 362-371.
|
29. |
Correa J A M, Abadi M K, Sebe N, et al. Amigos: a dataset for affect, personality and mood research on individuals and groups. IEEE T Affect Comput, 2021, 12(2): 479-493.
|
30. |
Abadi M K, Correa J A M, Wache J, et al. Inference of personality traits and affect schedule by analysis of spontaneous reactions to affective videos// 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG). Ljubljana: IEEE, 2015: 1-8.
|
31. |
Jach H K, Feuerriegel D, Smillie L D. Decoding personality trait measures from resting EEG: an exploratory report. Cortex, 2020, 130: 158-171.
|
32. |
Sporns O. Contributions and challenges for network models in cognitive neuroscience. Nat Neurosci, 2014, 17(5): 652-660.
|
33. |
Mulders P, Llera A, Tendolkar I, et al. Personality profiles are associated with functional brain networks related to cognition and emotion. Sci Rep-UK, 2018, 8(1): 1-8.
|
34. |
Niso G, Bruña R, Pereda E, et al. HERMES: towards an integrated toolbox to characterize functional and effective brain connectivity. Neuroinformatics, 2013, 11(4): 405-434.
|
35. |
La Rocca D, Campisi P, Vegso B, et al. Human brain distinctiveness based on EEG spectral coherence connectivity. IEEE T Bio-Med Eng, 2014, 61(9): 2406-2412.
|
36. |
Zheng W L, Zhang Y Q, Zhu J Y, et al. Transfer components between subjects for EEG-based emotion recognition// 2015 International Conference on Affective Computing and Intelligent Interaction (ACII). Xi'an: IEEE, 2015: 917-922.
|
37. |
Li J, Qiu S, Shen Y, et al. Multisource transfer learning for cross-subject EEG emotion recognition. IEEE T Cybernetics, 2019, 50(7): 3281-3293.
|
38. |
Jiménez-Guarneros M, Gómez-Gil P. Custom domain adaptation: a new method for cross-subject, EEG-based cognitive load recognition. IEEE Signal Proc Let, 2020, 27: 750-754.
|
39. |
白露, 马慧, 黄宇霞, 等. 中国情绪图片系统的编制-在46名中国大学生中的试用. 中国心理卫生杂志, 2005, 19(11): 719-722.
|
40. |
戴晓阳, 姚树桥, 蔡太生, 等. NEO个性问卷修订本在中国的应用研究. 中国心理卫生杂志, 2004, 18(3): 171-174.
|
41. |
Liu S, Zhang D, Tong J, et al. EEG-based emotion estimation using adaptive tracking of discriminative frequency components// 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Jeju: IEEE, 2017: 2231-2234.
|
42. |
Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Meth, 2004, 134(1): 9-21.
|
43. |
Mognon A, Jovicich J, Bruzzone L, et al. ADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology, 2011, 48(2): 229-240.
|
44. |
Pion-Tonachini L, Kreutz-Delgado K, Makeig S. ICLabel: an automated electroencephalographic independent component classifier, dataset, and website. Neuroimage, 2019, 198: 181-197.
|
45. |
Borgwardt K M, Gretton A, Rasch M J, et al. Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics, 2006, 22(14): e49-e57.
|
46. |
Long M, Wang J, Ding G, et al. Transfer feature learning with joint distribution adaptation// Proceedings of the IEEE International Conference on Computer Vision (ICCV). Sydney: IEEE, 2013: 2200-2207.
|
47. |
Wang J, Chen Y, Hao S, et al. Balanced distribution adaptation for transfer learning// 2017 IEEE International Conference on Data Mining (ICDM). New Orleans: IEEE, 2017: 1129-1134.
|
48. |
Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res, 2008, 9(11): 2579-2605.
|
49. |
Chen H, Sun S, Li J, et al. Personal-Zscore: eliminating individual difference for EEG-based cross-subject emotion recognition. IEEE T Affect Comput, 2021. DOI: 10.1109/TAFFC.2021.3137857.
|
50. |
Delorme A, Miyakoshi M, Jung T P, et al. Grand average ERP-image plotting and statistics: a method for comparing variability in event-related single-trial EEG activities across subjects and conditions. J Neurosci Meth, 2015, 250: 3-6.
|
51. |
Makeig S, Westerfield M, Jung T P, et al. Dynamic brain sources of visual evoked responses. Science, 2002, 295(5555): 690-694.
|
52. |
Tran Y, Craig A, Boord P, et al. Personality traits and its association with resting regional brain activity. Int J Psychophysiol, 2006, 60(3): 215-224.
|
53. |
Stenberg G. Personality and the EEG: arousal and emotional arousability. Pers Indiv Differ, 1992, 13(10): 1097-1113.
|
54. |
Gale A, Edwards J, Morris P, et al. Extraversion-introversion, neuroticism-stability, and EEG indicators of positive and negative empathic mood. Pers Indiv Differ, 2001, 30(3): 449-461.
|
55. |
He B, Astolfi L, Valdés-Sosa P A, et al. Electrophysiological brain connectivity: theory and implementation. IEEE T Bio-Med Eng, 2019, 66(7): 2115-2137.
|
56. |
郑敬华, 郭世泽, 高梁, 等. 基于多任务学习的大五人格预测. 中国科学院大学学报, 2018, 35(4): 550-560.
|
57. |
DeYoung C G. Higher-order factors of the big five in a multi-informant sample. J Pers Soc Psychol, 2006, 91(6): 1138-1151.
|
58. |
Gao S, Li W, Song L J, et al. PersonalitySensing: a multi-view multi-task learning approach for personality detection based on smartphone usage// Proceedings of the 28th ACM International Conference on Multimedia. Seattle: ACM, 2020: 2862-2870.
|
59. |
Wang Y, Yao Q, Kwok J T, et al. Generalizing from a few examples: a survey on few-shot learning. ACM Comput Surv, 2020, 53(3): 1-34.
|