1. |
Randler C, Engelke J. Gender differences in chronotype diminish with age: a meta-analysis based on morningness/chronotype questionnaires. Chronobiol Int, 2019, 36(7): 888-905.
|
2. |
Horne J A, Östberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol, 1976, 4(2): 97-110.
|
3. |
Deboer T. Sleep homeostasis and the circadian clock: do the circadian pacemaker and the sleep homeostat influence each other’s functioning?. Neurobiol Sleep Circadian Rhythm, 2018, 5: 68-77.
|
4. |
Sharma V K. Adaptive significance of circadian clocks. Chronobiol Int, 2003, 20(6): 901-919.
|
5. |
Valdez P, García A, Ramírez C. Circadian rhythms in cognitive performance: implications for neuropsychological assessment. Chronophys Ther, 2012, 2012: 81-92.
|
6. |
Valdez P, Ramírez C, García A, et al. Circadian and homeostatic variation in sustained attention. Chronobiol Int, 2010, 27(2): 393-416.
|
7. |
Gallegos C, García A, Ramírez C, et al. Circadian and homeostatic modulation of the attentional blink. Chronobiol Int, 2019, 36(3): 343-352.
|
8. |
García A, Ramírez C, Martínez B, et al. Circadian rhythms in two components of executive functions: cognitive inhibition and flexibility. Biol Rhythm Res, 2012, 43(1): 49-63.
|
9. |
IUPS Thermal Commission. Glossary of terms for thermal physiology. The Japanese Journal of Physiology, 2001, 51(2): 245-280.
|
10. |
Porkka-Heiskanen T, Strecker R E, Thakkar M, et al. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science, 1997, 276(5316): 1265-1268.
|
11. |
Dworak M, Diel P, Voss S, et al. Intense exercise increases adenosine concentrations in rat brain: implications for a homeostatic sleep drive. Neuroscience, 2007, 150(4): 789-795.
|
12. |
Landolt H P. Sleep homeostasis: a role for adenosine in humans?. Biochem Pharmacol, 2008, 75(11): 2070-2079.
|
13. |
Posner M I, Petersen S E. The attention system of the human brain. Annu Rev Neurosci, 1990, 13(1): 25-42.
|
14. |
Valdez P. Homeostatic and circadian regulation of cognitive performance. Biol Rhythm Res, 2019, 50(1): 85-93.
|
15. |
Posner M I, Rafal R D. Cognitive theories of attention and the rehabilitation of attentional deficits. Neuropsychol Rehabil, 1987: 182-201.
|
16. |
García A, Angel J D, Borrani J, et al. Sleep deprivation effects on basic cognitive processes: which components of attention, working memory, and executive functions are more susceptible to the lack of sleep?. Sleep Sci, 2021, 14(2): 107-118.
|
17. |
Valdez P, Ramirez C, Garcia A, et al. Circadian rhythms in components of attention. Biol Rhythm Res, 2005, 36(1/2): 57-65.
|
18. |
Valdez P. Circadian rhythms in attention. Yale J Biol Med, 2019, 92(1): 81-92.
|
19. |
Montaruli A, Castelli L, Mulè A, et al. Biological rhythm and chronotype: new perspectives in health. Biomolecules, 2021, 11(4): 487.
|
20. |
Song J, Feng P, Wu X, et al. Individual differences in the neural basis of response inhibition after sleep deprivation are mediated by chronotype. Front Neurol, 2019, 10: 514.
|
21. |
Nayak P, Vegad A. A comparative study on the effects of night shift on psychomotor vigilance and mathematical abilities of the nurses of different chronotypes. Natl J Physiol Pharm Pharmacol, 2020, 10(1): 75-78.
|
22. |
Martínez-Pérez V, Palmero L B, Campoy G, et al. The role of chronotype in the interaction between the alerting and the executive control networks. Sci Rep, 2020, 10(1): 11901.
|
23. |
Kati N, Elke V. The synchrony effect revisited: chronotype,time of day and cognitive performance in a semantic analogy task. Chronobiol Int, 2018, 35(12): 1647-1662.
|
24. |
Valdez P, Ramírez C, García A. Circadian rhythms in cognitive processes: implications for school learning. Mind Brain Educ, 2014, 8(4): 161-168.
|
25. |
Lewy A J, Cutler N L, Sack R L. The endogenous melatonin profile as a marker for circadian phase position. J Biol Rhythms, 1999, 14(3): 227-236.
|
26. |
谢爱萍, 彭立核, 李灵梅, 等. 人体中内源性褪黑素作用及检测技术现状. 中国卫生检验杂志, 2019, 29(22): 2814-2816.
|
27. |
Roenneberg T, Kuehnle T, Juda M, et al. Epidemiology of the human circadian clock. Sleep Med Rev, 2007, 11(6): 429-438.
|
28. |
张斌, 郝彦利, 荣润国. 清晨型与夜晚型评定量表的信度与效度. 中国行为医学科学, 2006(9): 856-858.
|
29. |
Liu Zhiwei, Dong Ying, Ying Xu, et al. Chronotype distribution in the Chinese population. Brain Science Advances, 2020, 6(2): 81-94.
|
30. |
Horne J A, Burley C V. We know when we are sleepy: subjective versus objective measurements of moderate sleepiness in healthy adults. Biol Psychol, 2010, 83(3): 266-268.
|
31. |
FAO/WHO/UNU. Energy and protein requirements: Report of a joint FAO/WHO/UNU expert consultation. World Health Organ Tech Rep, 1985, 724: 1.
|
32. |
Mifflin M D, St Jeor S T, Hill L A, et al. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr, 1990, 51(2): 241-247.
|
33. |
张佳月, 田征文, 谭红专. 人类基础代谢率测量方法的研究进展. 中南大学学报:医学版, 2018, 43(7): 805-810.
|
34. |
石汉平, 许红霞, 李薇. 临床能量需求的估算. 肿瘤代谢与营养电子杂志, 2015, 2(1): 1-4.
|
35. |
薛士平. 肖维勒准则系数的近似计算方法. 物理实验, 1987(6): 269-274.
|
36. |
Henry F M. Force-Time characteristics of the sprint start. Res Q Exerc Sport, 1952, 23(3): 301-318.
|
37. |
Savitzky A, Golay M E. Smoothing and differentiation of data by simplified least squares procedures. Analyt Chem, 1964, 36(8): 1627-1639.
|
38. |
Doran S M. van dongen H P, Dinges D F. Sustained attention performance during sleep deprivation: evidence of state instability. Arch Ital Biol, 2001, 139(3): 253-267.
|
39. |
Kleitman N. Sleep, wakefulness, and consciousness. Psychol Bull, 1957, 54(4): 354-359.
|
40. |
Squire R F, Noudoost B, Schafer R J, et al. Prefrontal contributions to visual selective attention. Annu Rev Neurosci, 2013, 36(1): 451-466.
|
41. |
Gosselin A, de Koninck J, Campbell K B. Total sleep deprivation and novelty processing: implications for frontal lobe functioning. Clinical Neurophysiology, 2005, 116(1): 211-222.
|
42. |
Sagaspe P, Taillard J, Amiéva H, et al. Influence of age, circadian and homeostatic processes on inhibitory motor control: a Go/Nogo task study. PLoS One, 2012, 7(6): e39410.
|