1. |
Yoganandan N, Pintar F A, Sances A J, et al. Biomechanics of skull fracture. J Neurotrauma, 1995, 12(4): 659-668.
|
2. |
Trosseille X, Tarriere C, Lavaste F, et al. Development of a FEM of the human head according to a specific test protocol, 36 th Stapp CarCrash Conference, 1992: 235-253.
|
3. |
Hayward P. Traumatic brain injury: the signature of modern conflicts. Lancet Neurol, 2008, 7(3): 200-201.
|
4. |
Bellander B M, Olafsson I H, Ghatan P H, et al. Secondary insults following traumatic brain injury enhance complement activation in the human brain and release of the tissue damage marker S100B. Acta Neurochir, 2011, 153(1): 90-100.
|
5. |
Jeter C B, Hergenroeder G W, Hylin M J, et al. Biomarkers for the diagnosis and prognosis of mild traumatic brain injury/concussion. J Neurotrauma, 2013, 30(8): 657-670.
|
6. |
陈越, 崔世海, 李海岩, 等. 几何尺寸和材料特性对头部转动特性的影响. 生物医学工程学杂志, 2016, 33(4): 639-644.
|
7. |
Li K, Wang J W, Liu S X, et al. Biomechanical behavior of brain injury caused by sticks using finite element model and hybrid-III testing. Chin J Traumatol, 2015, 18(2): 65-73.
|
8. |
Franklyn M, Fildes B, Zhang L, et al. Analysis of finite element models for head injury investigation: reconstruction of four real-world impacts. Stapp Car Crash J, 2005, 49: 1-32.
|
9. |
Takhounts E G, Ridella S A, Hasija V, et al. Investigation of traumatic brain injuries using the next generation of simulated injury monitor (SIMon) finite element head model. Stapp Car Crash J, 2008, 52: 1-31.
|
10. |
Gabler L F, Joodaki H, Crandall J R, et al. Development of a single-degree-of-freedom mechanical model for predicting strain-based brain injury responses. J Biomech Eng, 2018, 140(3): 031002.
|
11. |
Laksari K, Wu L C, Kurt M, et al. Resonance of human brain under head acceleration. J R Soc Interface, 2015, 12: 20150331.
|
12. |
Gabler L F, Crandall J R, Panzer M B. Development of a second-order system for rapid estimation of maximum brain strain. Ann Biomed Eng, 2019, 47(9): 1971-1981.
|
13. |
Prasad P, Mertz H J. The position of the United States delegation to the ISO working group 6 on the use of HIC in the automotive environment, SAE transactions, 1985: 106-116.
|
14. |
Newman J A, Shewchenko N, Welbourne E. A proposed new biomechanical head injury assessment function - the maximum power index. Stapp Car Crash J, 2000, 44: 215-247.
|
15. |
Newman J A. A generalized acceleration model for brain injury threshold (GAMBIT). Proceedings of IRCOBI Conference, 1986: 121-131.
|
16. |
Wu S, Zhao W, Ghazi K, et al. Convolutional neural network for efficient estimation of regional brain strains. Sci Rep, 2019, 9: 17326.
|
17. |
Rane L, Ding Z, Mcgregor A H, et al. Deep learning for musculoskeletal force prediction. Ann Biomed Eng, 2019, 47(3): 778-789.
|
18. |
Hannink J, Kautz T, Pasluosta C F, et al. Sensor-based gait parameter extraction with deep convolutional neural networks. IEEE J Biomed Health Inform, 2017, 21(1): 85-93.
|
19. |
Daimary D, Bora M B, Amitab K, et al. Brain tumor segmentation from MRI images using hybrid convolutional neural networks. Procedia Computer Science, 2020, 167: 2419-2428.
|
20. |
Taigman Y, Yang Ming, Ranzato M A, et al. DeepFace: closing the gap to human-level performance in face verification//2014 IEEE Conference on Computer Vision and Pattern Recognition, IEEE Computer Society, 2014: 1701-1708.
|
21. |
Ren Shaoqing, He Kaiming, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell, 2017, 39(6): 1137-1149.
|
22. |
Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks. Neural Information Processing Systems, 2012, 25: 1097-1105.
|
23. |
刘一鸣, 侯智超, 李晓琴, 等. 基于卷积神经网络的肺结节检测方法. 生物医学工程学杂志, 2019, 36(6): 969-977, 985.
|
24. |
Pang Yanwei, Sun Manli, Jiang Xiaoheng, et al. Convolution in convolution for network in network. IEEE Trans Neural Netw Learn Syst, 2017, 29(5): 1587-1597.
|
25. |
何培. 三维人体颅脑有限元模型构建和颅脑正面碰撞分析. 天津: 天津科技大学, 2006.
|
26. |
Nahum A M, Smith R W. An experimental model for closed head impact injury//Proceedings of 20th Stapp Car Crash Conference, 1976: 783-814.
|
27. |
Nahum A M, Smith R, Ward C C. Intracranial pressure dynamics during head impact//Proceedings of 21st Stapp Car Crash Conference, 1977: 339-366.
|
28. |
Yoganandan N, Zhang J, Pintar F. Force and acceleration corridors from lateral head impact. Traffic Inj Prev, 2004, 5(4): 368-373.
|
29. |
Koenig K, Mitchell N D, Hannigan T E, et al. The influence of moment of inertia on baseball/softball bat swing speed. Sports Engineering, 2004, 7(2): 105-117.
|
30. |
Koike S, Mimura K. Main contributors to the baseball bat head speed considering the generating factor of motion-dependent term. Procedia Engineering, 2016, 147: 197-202.
|
31. |
Thibault L E. Brain injury from the macro to the micro level and back again: what have we learned to date?. Proceedings of the 1993 International IRCOBI Conference on the Biomechanics of Impact, 1993: 3-25.
|
32. |
Takhounts E G, Craig M J, Moorhouse K, et al. Development of brain injury criteria (BrIC). Stapp Car Crash Journal, 2013, 57: 243-266.
|
33. |
Havaei M, Davy A, Warde-Farley D, et al. Brain tumor segmentation with deep neural networks. Med Image Anal, 2017, 35: 18-31.
|
34. |
Szegedy C, Liu Wei, Jia Yangqing, et al. Going deeper with convolutions//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2015. arXiv: 1409.4842.
|
35. |
Shi Guang, Zhang Jiangshe, Li Huirong, et al. Enhance the performance of deep neural networks via L2 regularization on the input of activations. Neural Process Lett, 2019, 50(1): 57-75.
|
36. |
Krstajic D, Buturovic L J, Leahy D, et al. Cross-validation pitfalls when selecting and assessing regression and classification models. J Cheminform, 2014, 6(1): 10.
|
37. |
Pillonetto G, Nicolao G D. Pitfalls of the parametric approaches exploiting cross-validation for model order selection. IFAC Proceedings Volumes, 2012, 45(16): 215-220.
|
38. |
Ji S, Zhao W. A pre-computed brain response atlas for instantaneous strain estimation in contact sports. Ann Biomed Eng, 2015, 43(8): 1877-1895.
|
39. |
Pak W, Meng Yunzhu, Schap J, et al. Finite element model of a high-stature male pedestrian for simulating car-to-pedestrian collisions. International Journal of Automotive Technology, 2019, 20(3): 445-453.
|
40. |
Zhao W, Ruan S, Li H, et al. Development and validation of a 5th percentile human head finite element model based on the Chinese population. Int J Veh Saf, 2012, 6(2): 91-109.
|
41. |
Li H, Li K, Huang Y, et al. Validation of a finite element model with six-year-old child anatomical characteristics as specified in Euro NCAP pedestrian human model certification (TB024). Computer Methods in Biomechanics and Biomedical Engineering, 2020, 2020(6): 1-15.
|
42. |
Meng Y, Pak W, Guleyupoglu B, et al. A finite element model of a six-year-old child for simulating pedestrian accidents. Accid Anal Prev, 2017, 98: 206-213.
|