1. |
Maron B J, Gardin J M, Flack J M, et al. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the cardia study. Coronary artery risk development in (young) adults. Circulation, 1995, 92(4): 785-789.
|
2. |
Semsarian C, Ingles J, Maron M S, et al. New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol, 2015, 65(12): 1249-1254.
|
3. |
Corrado D, Pelliccia A, Heidbuchel H, et al. Recommendations for interpretation of 12-lead electrocardiogram in the athlete. Eur Heart J, 2010, 31(2): 243-259.
|
4. |
Uberoi A, Stein R, Perez M V, et al. Interpretation of the electrocardiogram of young athletes. Circulation, 2011, 124(6): 746-757.
|
5. |
Drezner J A, Ackerman M J, Anderson J, et al. Electrocardiographic interpretation in athletes: The ‘Seattle criteria’. Br J Sports Med, 2013, 47(3): 122-124.
|
6. |
Maron B J, Haas T S, Murphy C J, et al. Incidence and causes of sudden death in us college athletes. J Am Coll Cardiol, 2014, 63(16): 1636-1643.
|
7. |
丁士骜, 梅举, 丁芳宝, 等. 肥厚梗阻型心肌病合并重度二尖瓣反流的外科治疗策略. 中国胸心血管外科临床杂志, 2016, 23(7): 675-678.
|
8. |
张妙贤. 超声心动图诊断肥厚型心肌病(HCM)的价值. 中国疗养医学, 2017(11): 60-61.
|
9. |
Ripley D P, Musa T A, Dobson L E, et al. Cardiovascular magnetic resonance imaging: What the general cardiologist should know. Heart, 2016, 102(19): 1589-1603.
|
10. |
Dominguez F, Gonzalez-Lopez E, Padron-Barthe L, et al. Role of echocardiography in the diagnosis and management of hypertrophic cardiomyopathy. Heart, 2018, 104(3): 260-272.
|
11. |
Inciardi R M, Galderisi M, Nistri S, et al. Echocardiographic advances in hypertrophic cardiomyopathy: Three-dimensional and strain imaging echocardiography. Echocardiography, 2018, 35(5): 716-726.
|
12. |
Losi M A, Imbriaco M, Canciello G, et al. Left ventricular mass in hypertrophic cardiomyopathy assessed by 2d-echocardiography: Validation with magnetic resonance imaging. J Cardiovasc Transl Res, 2020, 13(2): 238-244.
|
13. |
McLeod C J, Ackerman M J, Nishimura R A, et al. Outcome of patients with hypertrophic cardiomyopathy and a normal electrocardiogram. J Am Coll Cardiol, 2009, 54(3): 229-233.
|
14. |
Fujii J, Saihara S, Sawada H, et al. Distribution of left ventricular hypertrophy and electrocardiographic findings in patient with so-called apical hypertrophic cardiomyopathy. J Cardiogr Suppl, 1985, 6(6): 23-33.
|
15. |
Parisi R, Mirabella F, Secco G G, et al. Multimodality imaging in apical hypertrophic cardiomyopathy. World J Cardiol, 2014, 6(9): 916-923.
|
16. |
Ouyang N, Yamauchi K. Using a neural network to diagnose the hypertrophic portions of hypertrophic cardiomyopathy. MD Computing, 1998, 15(2): 106-109.
|
17. |
Rahman Q A, Tereshchenko L G, Kongkatong M, et al. Utilizing ECG-based heartbeat classification for hypertrophic cardiomyopathy identification. IEEE Trans Nanobioscience, 2015, 14(5): 505-512.
|
18. |
Campbell M J, Zhou X, Han C, et al. Pilot study analyzing automated ECG screening of hypertrophic cardiomyopathy. Heart Rhythm, 2017, 14(6): 848-852.
|
19. |
Lyon A, Ariga R, Minchole A, et al. Distinct ECG phenotypes identified in hypertrophic cardiomyopathy using machine learning associate with arrhythmic risk markers. Front Physiol, 2018, 9: 213.
|
20. |
马志玲, 邵虹, 胡海霞, 等. 肥厚型心肌病体表心电图特征. 心脏杂志, 2018, 30(5): 532-537.
|
21. |
Acharya U R, Fujita H, Lih O S, et al. Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Inform Sciences, 2017, 405(1): 81-90.
|
22. |
Lai D K, Bu Y X, Su Y, et al. Non-standardized patch-based ECG lead together with deep learning based algorithm for automatic screening of atrial fibrillation. IEEE J Biomed Health Inform, 2020, 24(6): 1569-1578.
|
23. |
Hannun A Y, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med, 2019, 25(1): 65-69.
|
24. |
Lai D K, Bu Y X, Su Y, et al. A flexible multilayered dry electrode and assembly to single-lead ECG patch to monitor atrial fibrillation in a real-life scenario. IEEE Sens J, 2020, 20(20): 12295-12306.
|
25. |
Bu Y X, Hassan M F U, Lai D K. The embedding of flexible conductive silver-coated electrodes into ECG monitoring garment for minimizing motion artefacts. IEEE Sens J, 2021, 21(13): 14454-14465.
|
26. |
Goldberger A L, Amaral L A, Glass L, et al. Physiobank, physiotoolkit, and PhysioNet - components of a new research resource for complex physiologic signals. Circulation, 2000, 101(23): E215-E220.
|
27. |
Bousseljot R, Kreiseler D, Schnabel A. Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet. Biomedizinische Technik, 1995, 40(S1): 317-318.
|
28. |
Sola J, Sevilla J. Importance of input data normalization for the application of neural networks to complex industrial problems. IEEE T Nucl Sci, 1997, 44(3): 1464-1468.
|
29. |
Rowin E J, Maron B J, Appelbaum E, et al. Significance of false negative electrocardiograms in preparticipation screening of athletes for hypertrophic cardiomyopathy. Am J Cardiol, 2012, 110(7): 1027-1032.
|