1. |
金洋, 张玮, 徐斌等. 发作期头皮电极脑电图在局灶性癫痫诊断中的价值. 癫痫杂志, 2019, 5(6): 431-439.
|
2. |
杨雨时, 姚丽芬. 癫痫患者的社会认知功能: 现状与展望. 脑与神经疾病杂志, 2021, 29(7): 450-453.
|
3. |
颜因, 彭晓燕, 王学峰. 癫痫发作后精神病的研究现状. 西南医科大学学报, 2021, 44(5): 425-428.
|
4. |
刘晓燕. 临床脑电图学. 第2版. 北京: 人民卫生出版社, 2018: 12-33.
|
5. |
Wang C, Zou J Z, Zhang J, et al. Recognition of epileptic EEG using support vector machines// Wang R, Gu F. Advances in Cognitive Neurodynamics (II). Dordrecht: Springer, 2009: 653-657.
|
6. |
Chen W, Shen C P, Chiu M J, et al. Epileptic EEG visualization and sonification based on linear discriminate analysis// 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Milan: IEEE, 2015: 4466-4469.
|
7. |
Sharmila A, Geethanjali P. Epileptic seizure detection from EEG signals using best feature subsets based on estimation of mutual information for support vector machines and naive bayes classifiers// International Conference on Emerging Trends and Advances in Electrical Engineering and Renewable Energy (ETAEERE). Majhitar: Sikkim Manipal Inst Technol, 2016: 585-593.
|
8. |
Rajaguru H, Prabhakar S K. Non linear ICA and logistic regression for classification of epilepsy from EEG signals// International conference of Electronics, Communication and Aerospace Technology (ICECA). Coimbatore: IEEE, 2017: 577-580.
|
9. |
Mursalin M, Zhang Y, Chen Y H, et al. Automated epileptic seizure detection using improved correlation-based feature selection with random forest classifier. Neu Comp, 2017, 241: 204-214.
|
10. |
Takahashi R, Matsubara T, Uehara K. Data augmentation using random image cropping and patching for deep CNNs. IEEE Trans Circuits Syst Video Technol, 2020, 30(9): 2917-2931.
|
11. |
王芋人, 武德安. 一种提高小目标检测准确率的数据增强方法. 激光杂志, 2021, 42(11): 41-45.
|
12. |
Wang F, Zhong S H, Peng J F, et al. Data augmentation for EEG-based emotion recognition with deep convolutional neural networks// 24th International Conference on MultiMedia Modeling(MMM). Bangkok: Chulalongkorn Univ, 2018, 10705: 82-93.
|
13. |
Fahimi F, Dosen S, Ang K K, et al. Generative adversarial networks-based data augmentation for brain-computer interface. IEEE Trans Neural Netw Learn Syst, 2020, 32(9): 4039-4051.
|
14. |
Krell M M, Kim S K. Rotational data augmentation for electroencephalographic data. Annu Int Conf IEEE Eng Med Biol Soc, 2017, 2017: 471-474.
|
15. |
Wei Z, Zou J Z, Zhang J, et al. Automatic epileptic EEG detection using convolutional neural network with improvements in time-domain. Biomedical Signal Process Control, 2019, 53: 101551.
|
16. |
Zhang B C, Wang W N, Xiao Y T, et al. Cross-subject seizure detection in EEGs using deep transfer learning. Comput Math Methods Med, 2020, 2020: 7902072.
|
17. |
Jiang Y Z, Wu D R, Deng Z H, et al. Seizure classification from EEG signals using transfer learning, semi-supervised learning and TSK fuzzy system. IEEE Trans Neu Syst Reh Eng, 2017, 25(12): 2270-2284.
|
18. |
Sola J, Sevilla J. Importance of input data normalization for the application of neural networks to complex industrial problems. IEEE Trans Nuc Sci, 1997, 44(3): 1464-1468.
|
19. |
王敏会, 常桂娟. 基于小波方法的时频域分析. 青岛农业大学学报, 2021, 38(3): 229-233.
|
20. |
Akyol K. Stacking ensemble based deep neural networks modeling for effective epileptic seizure detection. Exp Syst Appl, 2020, 148: 113239.
|
21. |
杨泽鑫. 深度集成分类模型在癫痫脑电预测中的应用研究. 太原: 太原理工大学, 2020.
|
22. |
Goldberger A L, Amaral L A N, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation, 2000, 101(23): E215-E220.
|
23. |
Yao X, Chen Q, Zhang G Q. Automated classification of seizures against nonseizures: A deep learning approach. arXiv, 2019: 1906.0274.
|
24. |
Huang C B, Chen W T, Cao G T. Automatic epileptic seizure detection via attention-based CNN-BiRNN// IEEE International Conference on Bioinformatics and Biomedicine (BIBM). San Diego: IEEE, 2019: 660-663.
|
25. |
Yao X H, Li X J, Ye Q, et al. A robust deep learning approach for automatic classification of seizures against non-seizures. Bio Sig Proc Cont, 2021, 64: 102215.
|