1. |
Sannino G, De Pietro G. A deep learning approach for ECG-based heartbeat classification for arrhythmia detection. Future Generation Computer Systems, 2018, 86: 446-455.
|
2. |
Kumar A, Komaragiri R, Kumar M. From pacemaker to wearable: techniques for ECG detection systems. J Med Syst, 2018, 42(2): 34.
|
3. |
Rajpurkar P, Hannun A Y, Haghpanahi M, et al. Cardiologist-level arrhythmia detection with convolutional neural networks. arXiv: Computer Vision and Pattern Recognition, 2017, arXiv: 1707.01836.
|
4. |
Sangaiah A K, Arumugam M, Bian G B. An intelligent learning approach for improving ECG signal classification and arrhythmia analysis. Artif Intell Med, 2020, 103: 101788.
|
5. |
Wu Q, Sun Y F, Yan H, et al. ECG signal classification with binarized convolutional neural network. Comput Biol Med, 2020, 121: 103800.
|
6. |
Dutta S, Chatterjee A, Munshi S. Correlation technique and least square support vector machine combine for frequency domain based ECG beat classification. Med Eng Phys, 2010, 32(10): 1161-1169.
|
7. |
Li T, Min Z. ECG classification using wavelet packet entropy and random forests. Entropy, 2016, 18(8): 285.
|
8. |
Moody G A, Mark R G. The impact of the MIT-BIH arrhythmia database. IEEE Engineering in Medicine and Biology Magazine, 2001, 20(3): 45-50.
|
9. |
Mondéjar-Guerra V, Novo J, Rouco J, et al. Heartbeat classification fusing temporal and morphological information of ECGs via ensemble of classifiers. Biomedical Signal Processing and Control, 2019, 47: 41-48.
|
10. |
行鸿彦, 黄敏松. 心电信号特征点提取的算法研究. 仪器仪表学报, 2008, 29(11): 2362-2366.
|
11. |
陈志博, 李健, 李智, 等. 基于RR间期和多特征值的房颤自动检测分类. 生物医学工程学杂志, 2018, 35(4): 550-556.
|
12. |
Khatibi T, Rabinezhadsadatmahaleh N. Proposing feature engineering method based on deep learning and K-NNs for ECG beat classification and arrhythmia detection. Phys Eng Sci Med, 2020, 43(1): 49-68.
|
13. |
李端, 张洪欣, 刘知青, 等. 基于深度残差卷积神经网络的心电信号心律不齐识别. 生物医学工程学杂志, 2019, 36(2): 189-198.
|
14. |
Mathews S M, Kambhamettu C, Barner K. A novel application of deep learning for single-lead ECG classification. Comput Biol Med, 2018, 99: 53-62.
|
15. |
刘光达, 周葛, 董梦坤, 等. 基于FFNN和1D-CNN的实时心律失常诊断系统与算法. 电子测量与仪器学报, 2021, 35(3): 35-42.
|
16. |
Xiao Q, Cai W J, Ge D F. ECG signal classification based on BPNN//2011 International Conference on Electric Information and Control Engineering. 2011, 2011: 1362-1364.
|
17. |
Li H, Yuan D, Ma X, et al. Genetic algorithm for the optimization of features and neural networks in ECG signals classification. Sci Rep, 2017, 7: 41011.
|
18. |
Moniz J R A, Krueger D. Nested LSTMs. arXiv: Computation and Language, 2018, arXiv: 1801.10308.
|
19. |
Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection. IEEE Trans Pattern Anal Mach Intell, 2020, 42(2): 318-327.
|
20. |
Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 2002, 16(1): 321-357.
|
21. |
Balachandran A, Ganesan M, Sumesh E P. Daubechies algorithm for highly accurate ECG feature extraction//2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE), IEEE, 2014: 1-5.
|
22. |
Acharya U R, Suri J S, Spaan J, et al. Wavelets and its application in cardiology. Springer Berlin Heidelberg, 2007, 2007(Chapter 18): 407-422.
|
23. |
Rai H M, Trivedi A, Shukla S, et al. ECG arrhythmia classification using daubechies wavelet and radial basis function neural network//2012 Nirma University International Conference on Engineering (NUiCONE), IEEE, 2012: 1-6.
|
24. |
Pan J, Tompkins W J. A real-time QRS detection algorithm. IEEE Trans Biomed Eng, 1985(3): 230-236.
|
25. |
Wang Yequan, Huang Minlie, Zhao Li, et al. Attention-based LSTM for aspect-level sentiment classification// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2016: 606-615.
|
26. |
Laina I, Rupprecht C, Belagiannis V, et al. Deeper depth prediction with fully convolutional residual networks//2016 Fourth International Conference on 3D Vision (3DV), IEEE, 2016: 239-248.
|
27. |
Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
|
28. |
Acharya U R, Oh S L, Hagiwara Y, et al. A deep convolutional neural network model to classify heartbeats. Comput Biol Med, 2017, 89: 389-396.
|