1. |
Liang G, Han J, Xing D. Precise tumor photothermal therapy guided and monitored by magnetic resonance/ photoacoustic imaging using a safe and ph-responsive Fe(Ⅲ) complex. Adv Healthc Mater, 2021, 10(3): e2001300.
|
2. |
Liu Y, Ai K, Liu J, et al. Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv Mater, 2013, 25(9): 1353-1359.
|
3. |
Kharey P, Dutta S B, Manikandan M, et al. Green synthesis of near-infrared absorbing eugenate capped iron oxide nanoparticles for photothermal application. Nanotechnology, 2020, 31(9): 95705.
|
4. |
杨晓露, 杨兴旺, 黄燕, 等. 一种新型磁共振成像造影剂的制备及性能. 高等学校化学学报, 2012, 33(2): 426-429.
|
5. |
Addisu K D, Hailemeskel B Z, Mekuria S L, et al. Bioinspired, manganese-chelated alginate-polydopamine nanomaterials for efficient in vivo T1-weighted magnetic resonance imaging. Acs Appl Mater Inter, 2018, 10(6): 5147-5160.
|
6. |
Vasireddi A K, Leo M E, Squires J H. Magnetic resonance imaging of pediatric liver tumors. Pediatr Radiol, 2022, 52(2): 177-188.
|
7. |
Xiao Y D, Paudel R, Liu J, et al. MRI contrast agents: classification and application (review). Int J Mol Med, 2016, 38(5): 1319-1326.
|
8. |
Pan L L, Yang Y, Li D L, et al. Linker-free gold nanoparticle superstructure coated with poly(dopamine) by site-specific polymerization for amplifying photothermal cancer therapy. Chem Asian J, 2020, 15(17): 2742-2748.
|
9. |
Yu S, Li G, Liu R, et al. Dendritic Fe3O4@poly(dopamine)@PAMAM nanocomposite as controllable no-releasing material: a synergistic photothermal and no antibacterial study. Adv Funct Mater, 2018, 28(20): 1707440.
|
10. |
Marotti M, Schmiedl U, White D, et al. Metal chelates as urographic contrast agents for magnetic resonance imaging. A comparative study. Rofo, 1987, 146(1): 89-93.
|
11. |
李胜斌, 许戴芸, 吕永辉, 等. 铁基磁共振造影剂的研究现状与临床应用展望. 中国CT和MRI杂志, 2021, 19(2): 1-6.
|
12. |
Shan X, Chen Q, Yin X, et al. Polypyrrole-based double rare earth hybrid nanoparticles for multimodal imaging and photothermal therapy. J Mater Chem B, 2020, 8(3): 426-437.
|
13. |
Lin L S, Cong Z X, Cao J B, et al. Multifunctional Fe3O4@polydopamine core-shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. Acs Nano, 2014, 8(4): 3876-3883.
|
14. |
Gong C, Lu C, Li B, et al. Dopamine-modified poly(amino acid): an efficient near-infrared photothermal therapeutic agent for cancer therapy. J Mater Sci, 2017, 52(2): 955-967.
|
15. |
Thapa B, Diaz-Diestra D, Beltran-Huarac J, et al. Enhanced MRI T2 relaxivity in contrast-probed anchor-free PEGylated iron oxide nanoparticles. Nanoscale Res Lett, 2017, 12(1): 312.
|
16. |
Servant A, Jacobs I, Bussy C, et al. Gadolinium-functionalised multi-walled carbon nanotubes as a T1 contrast agent for MRI cell labelling and tracking. Carbon, 2016, 97: 126-133.
|
17. |
Boehm-Sturm P, Haeckel A, Hauptmann R, et al. Low-molecular-weight iron chelates may be an alternative to gadolinium-based contrast agents for T1-weighted contrast-enhanced MR imaging. Radiology, 2018, 286(2): 537-546.
|
18. |
王花. 大枣多糖铁(Ⅲ)复合物的合成研究. 西安: 西北大学, 2009.
|
19. |
曹宇. 多功能光热纳米载体在肿瘤多模式成像与光学治疗中的应用. 北京: 北京科技大学, 2019.
|
20. |
Soenen S J, Hodenius M, De Cuyper M. Magnetoliposomes: versatile innovative nanocolloids for use in biotechnology and biomedicine. Nanomedicine, 2009, 4(2): 177-191.
|
21. |
Shang T, Yu X, Han S, et al. Nanomedicine-based tumor photothermal therapy synergized immunotherapy. Biomater Sci, 2020, 8(19): 5241-5259.
|
22. |
Huang X, Lu Y, Guo M, et al. Recent strategies for nano-based PTT combined with immunotherapy: from a biomaterial point of view. Theranostics, 2021, 11(15): 7546-7569.
|
23. |
Asik D, Abozeid S M, Turowski S G, et al. Dinuclear Fe(Ⅲ) hydroxypropyl-appended macrocyclic complexes as MRI probes. Inorg Chem, 2021, 60(12): 8651-8664.
|
24. |
Harrington M J, Masic A, Holten-Andersen N, et al. Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science, 2010, 328(5975): 216-220.
|
25. |
Miao Y, Xie F, Cen J, et al. Fe3+@polyDOPA-b-polysarcosine, a T1-weighted MRI contrast agent via controlled NTA polymerization. Acs Macro Lett, 2018, 7(6): 693-698.
|
26. |
Bharti S, Kaur G, Gupta S, et al. Luminescent core@shell nanoparticles functionalized with PEG for biological applications. Colloid Polym Sci, 2019, 297(4): 603-611.
|