1. |
中华人民共和国国家卫生健康委员会. 2019年我国卫生健康事业发展统计公报. 中国实用乡村医生杂志, 2020, 27(9): 1-11.
|
2. |
中国抗癌协会乳腺癌专业委员会. 中国抗癌协会乳腺癌诊治指南与规范(2019年版). 中国癌症杂志, 2019, 29(8): 609-679.
|
3. |
Chang Y W, Chen Y R, Ko C C, et al. A novel computer-aided-diagnosis system for breast ultrasound images based on BI-RADS categories. Applied Sciences, 2020, 10(5): 1-20.
|
4. |
Mathworks. Statistics and machine learning toolbox™ user's guide. Natick: Mathworks Ins, 2021: 1806-2046.
|
5. |
Chen P H, Fan R E, Lin C J. A study on SMO-type decomposition methods for support vector machines. IEEE Transactions on Neural Network, 2006, 17(4): 893-908.
|
6. |
Koun D D, Gupta S, Singh S. Computer aided thyroid nodule detection system using medical ultrasound images. Biomedical Signal Processing & Control, 2018, 40(3): 117-130.
|
7. |
邹波. 基于超声射频时间序列的乳腺病灶良恶性分类. 广州: 华南理工大学, 2018.
|
8. |
林春漪, 邹波, 周建华. 基于超声射频时间序列分析的乳腺病灶良恶性分类. 生物医学工程研究, 2018, 37(1): 21-26.
|
9. |
何培乾, 程阳阳, 赵彦群. 便携式超声设备: 中国, CN213525217U. 2021-05-28.
|
10. |
严郁, 朱伟, 蔡润秋, 等. 基于超声射频信号的乳腺肿瘤分级算法研究. 南京理工大学学报, 2018, 42(4): 385-391.
|
11. |
陆文周. Qt 5开发及实例. 北京: 电子工业出版社, 2014: 22-401.
|
12. |
罗洪艳, 徐旭, 高成龙, 等. 基于QT的磁共振质量检测自动分析系统的设计与实现. 生物医学工程学杂志, 2019, 36(4): 627-632.
|
13. |
陈彬. 基于多阈值Otsu关键算法的乳腺钼靶图像肿块分割研究. 兰州: 兰州交通大学, 2018.
|
14. |
Tsui P H, Chen C K, Kuo W H, et al. Small-window parametric imaging based on information entropy for ultrasound tissue characterization. Scientific Reports, 2017, 7(1): 41004.
|
15. |
高东平, 刘慧, 池慧. 乳腺肿瘤超声图像特征参数量化研究进展. 北京生物医学工程, 2011, 30(6): 656-660.
|
16. |
Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern, 1979, 9(1): 62-66.
|
17. |
王燕, 李积英, 杨宜林, 等. 基于SLIC和GVF Snake算法的乳腺肿瘤分割. 激光与光电子学进展, 2020, 57(14): 141023.
|
18. |
张玫玫, 高凡, 屠娟, 等. 非线性超声射频信号熵对乳腺结节良恶性的定征. 物理学报, 2021, 70(8): 084302.
|
19. |
Piotrzkowska-Wróblewska H, Dobruch-Sobczak K, Byra M, et al. Open access database of raw ultrasonic signals acquired from malignant and benign breast lesions. Med Phys, 2017, 44(11): 6105-6109.
|
20. |
Steifer T, Lewandowski M. Ultrasound tissue characterization based on the Lempel–Ziv complexity with application to breast lesion classification. Biomed Signal Process Control, 2019, 51(1): 235-242.
|
21. |
Byra M. Discriminant analysis of neural style representations for breast lesion classification in ultrasound. Biocybern Biomed Eng, 2018, 38(3): 684-690.
|
22. |
Ouyang Y, Tsui P H, Wu S, et al. Classification of benign and malignant breast tumors using h-scan ultrasound imaging. Diagnostics (Basel), 2019, 9(4): 182.
|
23. |
Jarosik P, Klimonda Z, Lewandowski M, et al. Breast lesion classification based on ultrasonic radio-frequency signals using convolutional neural networks. Biocybern Biomed Eng, 2020, 40(3): 977-986.
|