1. |
Chaudhari A S, Fang Z, Kogan F, et al. Super-resolution musculoskeletal MRI using deep learning. Magn Reson Med Magnetic Resonance in Medicine, 2018, 80(5): 2139-2154.
|
2. |
Umehara K, Ota J, Ishida T. Application of super-resolution convolutional neural network for enhancing image resolution in chest CT. J Digit Imaging, 2018, 31(4): 441-450.
|
3. |
Zhu J, Yang G, Lio P. How can we make GAN perform better in single medical image super-resolution? A lesion focused multi-scale approach// Proceedings of The 16th IEEE International Symposium on Biomedical Imaging (ISBI). Venezia: IEEE, 2019: 1-5.
|
4. |
Cheng B, Xiao R, Wang J, et al. High frequency residual learning for multi-scale image classification// Proceedings of British Machine Vision Conference (BMVC). Cardiff: British Machine Vision Society, 2019: 1-14.
|
5. |
Borji A, Cheng M M, Hou Q, et al. Salient object detection: A survey. Computational Visual Media, 2019, 5(2): 117-150.
|
6. |
张宁, 王永成, 张欣, 等. 基于深度学习的单张图片超分辨率重构研究进展. 自动化学报, 2020, 46(12): 2479-2499.
|
7. |
Dong C, Loy C C, He K M, et al. Learning a deep convolutional network for image super-resolution// Proceedings of European Conference on Computer Vision (ECCV). Zurich: IEEE, 2014: 184-199.
|
8. |
Kim J, Lee J K, Lee K M. Accurate image super-resolution using very deep convolutional networks// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 1646-1654.
|
9. |
Tai Y, Yang J, Liu X M. Image super-resolution via deep recursive residual network// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Hawaii: IEEE, 2017: 3147-3155.
|
10. |
Tai Y, Yang J, Liu X M, et al. MemNet: a persistent memory network for image restoration// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Hawaii: IEEE, 2017: 4539-4547.
|
11. |
Zhang Y L, Li K P, Li K, et al. Image super-resolution using very deep residual channel attention networks// Proceedings of European Conference on Computer Vision (ECCV). Munich: IEEE, 2018: 294-310.
|
12. |
Tong T, Li G, Liu X, et al. Image super-resolution using dense skip connections// Proceedings of IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 4809-4817.
|
13. |
Zhang Y L, Tian Y P, Kong Y, et al. Residual dense network for image super-resolution// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE, 2018: 2472-2481.
|
14. |
Hui Z, Wang X M, Gao X B. Fast and accurate single image super-resolution via information distillation network// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE, 2018: 723-731.
|
15. |
Li J C, Fang F M, Mei K F, et al. Multi-scale residual network for image super-resolution// Proceedings of European Conference on Computer Vision (ECCV). Munich: IEEE, 2018: 527-542.
|
16. |
Li Z, Yang J L, Liu Z, et al. Feedback network for image super-resolution// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). California: IEEE, 2019: 3867-3876.
|
17. |
沈明玉, 俞鹏飞, 汪荣贵, 等. 多阶段融合网络的图像超分辨率重建. 中国图象图形学报, 2019, 24(8): 1258-1269.
|
18. |
Shu Z, Cheng M C, Yang B, et al. Residual magnifier: a dense information flow network for super resolution// Proceedings of IEEE International Conference on Multimedia and Expo (ICME). Shanghai: IEEE, 2019: 646-651.
|
19. |
Chen Y, Li J, Xiao H, et al. Dual path networks// Proceedings of Conference and Workshop on Neural Information Processing Systems (NeurIPS). California: IEEE, 2017: 4467-4475.
|
20. |
Gao S H, Cheng M M, Zhao K, et al. Res2Net: A new multi-scale backbone architecture. IEEE Trans Pattern Anal Mach Intell, 2021, 43(2): 652-662.
|
21. |
应自炉, 龙祥. 多尺度密集残差网络的单幅图像超分辨率重建. 中国图象图形学报, 2019, 24(3): 0410-0419.
|
22. |
Wang C P, Wang S M, Ma B, et al. Transform domain based medical image super-resolution via deep multi-scale network// Proceedings of International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton: IEEE, 2019: 2387-2391.
|
23. |
Guo T T, Mousavi H S, Vu T H, et al. Deep wavelet prediction for image super-resolution// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Hawaii: IEEE, 2017: 104-113.
|
24. |
Huang H B, He R, Sun Z N. Wavelet-SRnet: a wavelet-based CNN for multi-scale face super resolution// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Hawaii: IEEE, 2017: 1689-1697.
|
25. |
Lim B, Son S, Kim H, et al. Enhanced deep residual networks for single image super-resolution// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Hawaii: IEEE, 2017: 1-9.
|
26. |
Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks// Proceedings of International Conference on Artificial Intelligence and Statistics (AISTATS). Fort Lauderdale: AISTATS, 2011: 315-323.
|
27. |
Mallat S. A wavelet tour of signal processing: the sparse way. Stanford University: Academic Press, 2008.
|
28. |
Lim W Q. The discrete shearlet transform: a new directional transform and compactly supported shearlet frames. IEEE Trans Image Process, 2010, 19(5): 1166-1180.
|
29. |
Hou B, Zhang X H, Bu X M, et al. SAR image despeckling based on nonsubsampled shearlet transform. IEEE J Selected Topics Appl Earth Obs Remote Sens, 2012, 5(3): 809-823.
|
30. |
Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process, 2004, 13(4): 600-612.
|
31. |
Seitzer M, Yang G, Schlemper J, et al. Adversarial and perceptual refinement for compressed sensing MRI reconstruction// Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Granada: Medical Image Computing and Computer-Assisted Intervention Society, 2018: 232-240.
|
32. |
Clark K, Vendt B, Smith K, et al. The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging, 2013, 26(6): 1045-1057.
|