1. |
Haskins G, Kruger U, Yan Pingkun. Deep learning in medical image registration: a survey. arXiv: 1903.02026, 2020. https://doi.org/10.48550/arXiv.1903.02026.
|
2. |
Jaderberg M, Simonyan K, Zisserman A, et al. Spatial transformer networks//the 28th International Conference on Neural Information Processing Systems-Volume 2 (NIPS), 2015. https://doi.org/10.48550/arXiv.1506.02025.
|
3. |
Balakrishnan G, Zhao A, Sabuncu M R, et al. An unsupervised learning model for deformable medical image registration//Proceedings of the IEEE conference on computer vision and pattern recognition(CVPR). 2018. https://doi.org/10.48550/arXiv.1802.02604.
|
4. |
Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation//International Conference on Medical image computing and computer-assisted intervention(MICCAI), Cham: Springer, 2015: 234-241.
|
5. |
Zhao Shengyu, Dong Yue, Chang E I, et al. Recursive cascaded networks for unsupervised medical image registration//Proceedings of the IEEE/CVF International Conference on Computer Vision(ICCV). 2019: 10600-10610. https://doi.org/10.48550/arXiv.1907.12353.
|
6. |
Kim B, Kim D H, Park S H, et al. CycleMorph: cycle consistent unsupervised deformable image registration. Med Image Anal, 2021, 71: 102036.
|
7. |
Huang Y, Ahmad S, Fan J, et al. Difficulty-aware hierarchical convolutional neural networks for deformable registration of brain MR images. Med Image Anal, 2021, 67: 101817.
|
8. |
Li Shaohua, Sui Xiuchao, Luo Xiangde, et al. Medical image segmentation using squeeze-and-expansion transformers. arXiv: 2105.09511, 2021. https://doi.org/10.48550/arXiv.2105.09511.
|
9. |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16 × 16 words: transformers for image recognition at scale. arXiv: 2010.11929, 2020. https://doi.org/10.48550/arXiv.2010.11929.
|
10. |
Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows//The IEEE/CVF International Conference on Computer Vision(ICCV). 2021: 10012-10022.
|
11. |
Chen Junyu, He Yufan, Frey E C, et al. ViT-V-Net: vision transformer for unsupervised volumetric medical image registration. arXiv: 2104.06468, 2021. https://doi.org/10.48550/arXiv.2104.06468.
|
12. |
Milletari F, Navab N, Ahmadi S A. V-net: fully convolutional neural networks for volumetric medical image segmentation//2016 fourth international conference on 3D vision (3DV). IEEE, 2016: 565-571.
|
13. |
Chen Junyu, Du Yong, He Yufan, et al. TransMorph: Transformer for unsupervised medical image registration. arXiv: 2111.10480, 2021. https://doi.org/10.48550/arXiv.2111.10480.
|
14. |
Vercauteren T, Pennec X, Perchant A, et al. Diffeomorphic demons: efficient non-parametric image registration. Neuroimage, 2009, 45(1 Suppl): S61-S72.
|
15. |
Zhou H Y, Guo J, Zhang Y, et al. nnFormer: interleaved transformer for volumetric segmentation. arXiv: 2109.03201, 2021. https://doi.org/10.48550/arXiv.2109.03201.
|
16. |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need// 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach: NIPS, 2017: 6000-6010.
|
17. |
Zeiler M D, Taylor G W, Fergus R. Adaptive deconvolutional networks for mid and high level feature learning//2011 International Conference on Computer Vision (ICCV). Barcelona: IEEE, 2011: 12491108.
|
18. |
Allen D M. Mean square error of prediction as a criterion for selecting variables. Technometrics, 1971, 13(3): 469-475.
|
19. |
Shattuck DW, Mirza M, Adisetiyo V, et al. Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage, 2008, 39(3): 1064-1080.
|
20. |
Marcus DS, Wang TH, Parker J, et al. Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci, 2007, 19(9): 1498-1507.
|
21. |
Fischl B. FreeSurfer. NeuroImage, 2012, 62(2): 774-781.
|
22. |
Avants B B, Epstein C L, Grossman M, et al. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal, 2008, 12(1): 26-41.
|
23. |
Klein A, Andersson J, Ardekani B A, et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage, 2009, 46(3): 786-802.
|
24. |
Avants B B, Tustison N J, Song G, et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage, 2011, 54(3): 2033-2044.
|
25. |
Paszke A, Gross S, Massa F, et al. PyTorch: an imperative style, high-performance deep learning library// the 33rd International Conference on Neural Information Processing Systems (NeurIPS 2019), 2019. https://doi.org/10.48550/arXiv.1912.01703.
|
26. |
Dice L R. Measures of the amount of ecologic association between species. Ecology, 1945, 26(3): 297-302.
|
27. |
Dacorogna B, Moser J. On a partial differential equation involving the jacobian determinant. Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 1990, 7(1): 1-26.
|
28. |
Wang Shiqi, Rehman A, Wang Zhou, et al. SSIM-motivated rate-distortion optimization for video coding. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 22(4): 516-529.
|
29. |
Viola P, Wells III W M. Alignment by maximization of mutual information//IEEE International Conference on Computer Vision, 1995: 16-23. DOI: 10.1109/ICCV.1995.466930.
|