1. |
Zimmerman M S, Smith A, Sable C, et al. Global, regional, and national burden of congenital heart disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Child Adolesc, 2020, 4(3): 185-200.
|
2. |
Shahmohammadi M, Luo H, Westphal P, et al. Hemodynamics-driven mathematical model of first and second heart sound generation. PLOS Comput Biol, 2021, 17(9): 1009361.
|
3. |
Xu Weize, Yu Kai, Ye Jingjing, et al. Automatic pediatric congenital heart disease classification based on heart sound signal. Artif Intell Med, 2022, 126: 102257.
|
4. |
Liu C, Springer D, Clifford G D. Performance of an open-source heart sound segmentation algorithm on eight independent databases. Physiol Meas, 2017, 38(8): 1730-1745.
|
5. |
Zabihi M, Rad A B, Kiranyaz S, et al. Heart sound anomaly and quality detection using ensemble of neural networks without segmentation// 2016 Computing in Cardiology Conference (CinC). Vancouver: IEEE, 2016: 613-616.
|
6. |
Sujit N R, Kumar C S, Rajesh C B. Improving the performance of cardiac abnormality detection from PCG signal// 2016 AIP Conference Proceedings (AIPCP). Ekaterinburg: AIP, 2016: 020053.
|
7. |
Chen Q, Zhang W, Xiang T, et al. Automatic heart and lung sounds classification using convolutional neural networks// Signal and Information Processing Association Summit and Conference (APSIPA). Jeju: IEEE, 2016: 1-4.
|
8. |
Asmare M, Woldehanna F, Janssens L, et al. Rheumatic heart disease detection using deep learning from spectro-temporal representation of un-segmented heart sounds// 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Montreal: IEEE, 2020: 168-171.
|
9. |
Rubin J, Rui A, Ganguli A, et al. Classifying heart sound recordings using deep convolutional neural networks and mel-frequency cepstral coefficients// 2016 Computing in Cardiology Conference (CinC). Vancouver: IEEE, 2016: 813-816.
|
10. |
Khan F A, Abid A, Khan M S. Automatic heart sound classification from segmented/unsegmented phonocardiogram signals using time and frequency features. Physiol Meas, 2020, 41(5): 055006.
|
11. |
Gao S, Zheng Y, Guo X. Gated recurrent unit-based heart sound analysis for heart failure screening. BioMed Eng OnLine, 2020, 19(1): 3.
|
12. |
Yousefi M, Hansen J. Block-based high performance CNN architectures for frame-level overlapping speech detection. IEEE-ACM T Audio Spe, 2020, 29: 28-40.
|
13. |
Chen Y, Lv J, Sun Y, et al. Heart sound segmentation via duration long-short term memory neural network. Appl Soft Comput, 2020, 95: 106540.
|
14. |
Astuti W, Sediono W, Aibinu A M, et al. Adaptive short time fourier transform (STFT) analysis of seismic electric signal (SES): a comparison of hamming and rectangular window// Industrial Electronics & Applications (IEA). Bandung: IEEE, 2013: 372-377.
|
15. |
Likitha M S, Gupta S, Hasitha K, et al. Speech based human emotion recognition using MFCC// International Conference on Wireless Communications (ICWC). Chennai: IEEE, 2017: 2257-2260.
|
16. |
Deng M, Meng T, Cao J, et al. Heart sound classification based on improved MFCC features and convolutional recurrent neural networks. Neural Networks, 2020, 130(1): 22-32.
|
17. |
Yan T, Wang D, Zheng M, et al. Fisher’s discriminant ratio based health indicator for locating informative frequency bands for machine performance degradation assessment. Mech Syst Signal Pr, 2022, 162(9): 108053.
|
18. |
Lu F, Li H. KLDA–an iterative approach to Fisher siscriminant analysis// IEEE International Conference on Image Processing (ICIP). San Antonio: IEEE, 2007: 201-204.
|
19. |
Hu X H, Gansen Z, Lv J Z, et al. Isolated word speech recogniton based on HRSF and improved DTW algorithm// IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology (WI-IAT). Macau: ACM, 2012: 270-273.
|
20. |
Xiao B, Xu Y, Bi X, et al. Heart sounds classification using a novel 1-D convolutional neural network with extremely low parameter consumption. Neurocomputing, 2019, 392: 153-159.
|
21. |
Zhang W, Han J, Deng S. Abnormal heart sound detection using temporal quasi-periodic features and long short-term memory without segmentation. Biomed Signal Proces, 2019, 53: 101560.
|
22. |
Lim H I. A study on layers of deep neural networks// 2020 3rd International Conference on Intelligent Autonomous Systems (ICoIAS). Singapore: IEEE, 2020: 31-34.
|
23. |
Lecun Y, Boser B, Denker J, et al. Backpropagation applied to handwritten zip code recognition. Neural Comput, 2014, 1(4): 541-551.
|
24. |
Hochreiter S. The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int J Uncertain Fuzz, 1998, 6(2): 107-116.
|
25. |
Mirza A H. Online additive updates with FFT-IFFT operator on the GRU neural networks// Signal Processing and Communications Applications Conference (SIU). Izmir: IEEE, 2018: 1-4.
|
26. |
Dean J, Corrado G S, Monga R, et al. Large scale distributed deep networks. Adv Neural Inf Proces Syst, 2013, 1: 1223-1231.
|
27. |
Liu C, Springer D, Li Q, et al. An open access database for the evaluation of heart sound algorithms. Physiol Meas, 2016, 37(12): 2181-2213.
|