1. |
Nimer E, Schneiderman R, Maroudas A. Diffusion and partition of solutes in cartilage under static load. Biophys Chem, 2003, 106(2): 125-146.
|
2. |
Nims R J, Cigan A D, Albro M B, et al. Synthesis rates and binding kinetics of matrix products in engineered cartilage constructs using chondrocyte-seeded agarose gels. J Biomech, 2014, 47(9): 2165-2172.
|
3. |
Hung C T, Lima E G, Mauck R L, et al. Anatomically shaped osteochondral constructs for articular cartilage repair. J Biomech, 2003, 36(12): 1853-1864.
|
4. |
Didomenico C D, Lintz M, Bonassar L J. Molecular transport in articular cartilage—what have we learned from the past 50 years. Nat Rev Rheumatol, 2018, 14(7): 393-403.
|
5. |
Evans R C, Quinn T M. Dynamic compression augments interstitial transport of a glucose-like solute in articular cartilage. Biophys J, 2006, 91(4): 1541-1547.
|
6. |
Graham B T, Moore A C, Burris D L, et al. Mapping the spatiotemporal evolution of solute transport in articular cartilage explants reveals how cartilage recovers fluid within the contact area during sliding. J Biomech, 2018, 71: 271-276.
|
7. |
Graham B T, Moore A C, Burris D L, et al. Sliding enhances fluid and solute transport into buried articular cartilage contacts. Osteoarthr Cartilage, 2017, 25(12): 2100-2107.
|
8. |
Culliton K N, Speirs A D. Sliding contact accelerates solute transport into the cartilage surface compared to axial loading. Osteoarthr Cartilage, 2021, 29(9): 1362-1369.
|
9. |
Didomenico C D, Wang Zhenxiang, Bonassar L J. Cyclic mechanical loading enhances transport of antibodies into articular cartilage. J Biomech Eng, 2017, 139(1): 1-7.
|
10. |
Quinn T M, Kocian P, Meister J. Static compression is associated with decreased diffusivity of dextrans in cartilage explants. Arch Biochem Biophys, 2000, 384(2): 327-334.
|
11. |
Evans R C, Quinn T M. Solute convection in dynamically compressed cartilage. J Biomech, 2006, 39(6): 1048-1055.
|
12. |
Pouran B, Arbabi V, Zadpoor A A, et al. Isolated effects of external bath osmolality, solute concentration, and electrical charge on solute transport across articular cartilage. Med Eng Phys, 2016, 38(12): 1399-1407.
|
13. |
Silvast T S, Jurvelin J S, Tiitu V, et al. Bath concentration of anionic contrast agents does not affect their diffusion and distribution in articular cartilage in vitro. Cartilage, 2013, 4(1): 42-51.
|
14. |
Didomenico C D, Bonassar L J. The effect of charge and mechanical loading on antibody diffusion through the articular surface of cartilage. J Biomech Eng, 2019, 141(1): 1-7.
|
15. |
Kokkonen H T, Chin H C, Töyräs J, et al. Solute transport of negatively charged contrast agents across articular surface of injured cartilage. Ann Biomed Eng, 2017, 45(4): 973-981.
|
16. |
Entezari V, Bansal P N, Stewart R C, et al. Effect of mechanical convection on the partitioning of an anionic iodinated contrast agent in intact patellar cartilage. J Orthop Res, 2014, 32(10): 1333-1340.
|
17. |
Didomenico C D, Goodearl A, Yarilina A, et al. The effect of antibody size and mechanical loading on solute diffusion through the articular surface of cartilage. J Biomech Eng, 2017, 139(9): 1-8.
|
18. |
Kulmala K A M, Korhonen R K, Julkunen P, et al. Diffusion coefficients of articular cartilage for different CT and MRI contrast agents. Med Eng Phys, 2010, 32(8): 878-882.
|
19. |
Shoga J S, Graham B T, Wang Liyun, et al. Direct quantification of solute diffusivity in agarose and articular cartilage using correlation spectroscopy. Ann Biomed Eng, 2017, 45(10): 2461-2474.
|
20. |
Travascio F, Valladares-Prieto S, Jackson A R. Effects of solute size and tissue composition on molecular and macromolecular diffusivity in human knee cartilage. Osteoarthr Cartilage Open, 2020, 2(4): 1-7.
|
21. |
Leddy H A, Guilak F. Site-specific molecular diffusion in articular cartilage measured using fluorescence recovery after photobleaching. Ann Biomed Eng, 2003, 31(7): 753-760.
|
22. |
Sampson S L, Sylvia M, Fields A J. Effects of dynamic loading on solute transport through the human cartilage endplate. J Biomech, 2019, 83: 273-279.
|
23. |
Didomenico C D, Kaghazchi A, Bonassar L J. Measurement of local diffusion and composition in degraded articular cartilage reveals the unique role of surface structure in controlling macromolecular transport. J Biomech, 2019, 82: 38-45.
|
24. |
Chin H C, Moeini M, Quinn T M. Solute transport across the articular surface of injured cartilage. Arch Biochem Biophys, 2013, 535(2): 241-247.
|
25. |
Sophia Fox A J, Bedi A, Rodeo S A. The basic science of articular cartilage: structure, composition, and function. Sports Health, 2009, 1(6): 461-468.
|
26. |
Travascio F, Devaux F, Volz M, et al. Molecular and macromolecular diffusion in human meniscus: relationships with tissue structure and composition. Osteoarthr Cartilage, 2020, 28(3): 375-382.
|
27. |
王宇泽, 段王平, 曾令员, 等. 聚氯乙烯造模阻断关节液对关节软骨影响的研究. 中华关节外科杂志(电子版), 2015, 9(4): 488-494.
|
28. |
Shafieyan Y, Khosravi N, Moeini M, et al. Diffusion of MRI and CT contrast agents in articular cartilage under static compression. Biophys J, 2014, 107(2): 485-492.
|
29. |
Fetter N L, Leddy H A, Guilak F, et al. Composition and transport properties of human ankle and knee cartilage. J Orthop Res, 2006, 24(2): 211-219.
|
30. |
Leddy H A, Haider M A, Guilak F. Diffusional anisotropy in collagenous tissues: fluorescence imaging of continuous point photobleaching. Biophys J, 2006, 91(1): 311-316.
|