1. |
Wang G, Wang D, Du C, et al. Seizure prediction using directed transfer function and convolution neural network on intracranial EEG. IEEE Trans Neural Syst Rehabil Eng, 2020, 28(12): 2711-2720.
|
2. |
Li Y, Shi W, Liu Z, et al. Effective brain state estimation during propofol-induced sedation using advanced EEG microstate spectral analysis. IEEE J Biomed Health Inform, 2020, 25(4): 978-987.
|
3. |
Sivathamboo S, Farrand S, Chen Z, et al. Sleep-disordered breathing among patients admitted for inpatient video-EEG monitoring. Neurology, 2019, 92(3): e194-e204.
|
4. |
Gong R, Wegscheider M, Mühlberg C, et al. Spatiotemporal features of β-γ phase-amplitude coupling in Parkinson’s disease derived from scalp EEG. Brain, 2021, 144(2): 487-503.
|
5. |
Wen D, Fan Y, Hsu S H, et al. Combining brain–computer interface and virtual reality for rehabilitation in neurological diseases: A narrative review. Ann Phys Rehabil Med, 2021, 64(1): 101404.
|
6. |
Urigüen J A, Garcia Z B. EEG artifact removal—state-of-the-art and guidelines. J Neural Eng, 2015, 12(3): 031001.
|
7. |
Egambaram A, Badruddin N, Asirvadam V S, et al. FastEMD–CCA algorithm for unsupervised and fast removal of eyeblink artifacts from electroencephalogram. Biomed Signal Process Control, 2020, 57: 101692.
|
8. |
Sun W, Su Y, Wu X, et al. A novel end-to-end 1D-ResCNN model to remove artifact from EEG signals. Neurocomputing, 2020, 404: 108-121.
|
9. |
Fatourechi M, Bashashati A, Ward R K, et al. EMG and EOG artifacts in brain computer interface systems: A survey. Clin Neurophysiol, 2007, 118(3): 480-494.
|
10. |
Klados M A, Papadelis C, Braun C, et al. REG-ICA: A hybrid methodology combining Blind Source Separation and regression techniques for the rejection of ocular artifacts. Biomed Signal Process Control, 2011, 6(3): 291-300.
|
11. |
Islam M K, Rastegarnia A, Yang Z. Methods for artifact detection and removal from scalp EEG: A review. Neurophysiol Clin, 2016, 46(4-5): 287-305.
|
12. |
Chen Y, Zhao Q, Hu B, et al. A method of removing ocular artifacts from EEG using discrete wavelet transform and Kalman filtering// 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Shenzhen: IEEE, 2016: 1485-1492.
|
13. |
Wu Z, Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal, 2009, 1(01): 1-41.
|
14. |
杨磊, 杨帆, 何艳. 采用样本熵-完备经验模态分解的脑电信号眼电伪迹去除算法. 西安交通大学学报, 2020, 54(8): 177-184.
|
15. |
Guarnieri R, Marino M, Barban F, et al. Online EEG artifact removal for BCI applications by adaptive spatial filtering. J Neural Eng, 2018, 15(5): 056009.
|
16. |
Burger C, van den Heever D J. Removal of EOG artefacts by combining wavelet neural network and independent component analysis. Biomed Signal Process Control, 2015, 15: 67-79.
|
17. |
Wang Z Y, Xu P, Liu T J, et al. Robust removal of ocular artifacts by combining independent component analysis and system identification. Biomed Signal Process Control, 2014, 10(3): 250-259.
|
18. |
Castellanos N P, Makarov V A. Recovering EEG brain signals: artifact suppression with wavelet enhanced independent component analysis. J Neurosci Methods, 2006, 158(2): 300-312.
|
19. |
Pion-Tonachini L, Hsu S H, Chang C Y, et al. Online automatic artifact rejection using the real-time EEG source-mapping toolbox (REST)// 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Honolulu: IEEE, 2018: 106-109.
|
20. |
Issa M F, Juhasz Z. Improved EOG artifact removal using wavelet enhanced independent component analysis. Brain Sci, 2019, 9(12): 355.
|
21. |
Durka P J, Klekowicz H, Blinowska K J, et al. A simple system for detection of EEG artifacts in polysomnographic recordings. IEEE Trans Biomed Eng, 2003, 50(4): 526-528.
|
22. |
Trigui O, Daoud S, Ghorbel M, et al. Removal of eye blink artifacts from EEG signal using morphological modeling and orthogonal projection. Signal Image Video Process, 2022, 16: 19-27.
|
23. |
Delorme A, Sejnowski T, Makeig S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. Neuroimage, 2007, 34(4): 1443-1449.
|
24. |
Mammone N, La Foresta F, Morabito F C. Automatic artifact rejection from multichannel scalp EEG by wavelet ICA. IEEE Sens J, 2011, 12(3): 533-542.
|
25. |
Teng C L, Zhang Y Y, Wang W, et al. A novel method based on combination of independent component analysis and ensemble empirical mode decomposition for removing electrooculogram artifacts from multichannel electroencephalogram signals. Front Neurosci, 2021, 15: 729403.
|
26. |
Klados M A, Bamidis P D. A semi-simulated EEG/EOG dataset for the comparison of EOG artifact rejection techniques. Data Brief, 2016, 8: 1004-1006.
|
27. |
张锐, 刘家俊, 陈明明, 等. 基于小波变换-集合经验模态分解的单通道脑电信号眼电伪迹自动去除研究. 生物医学工程学杂志, 2021, 38(3): 473-482.
|
28. |
Majmudar C A, Mahajan R, Morshed B I. Real-time hybrid ocular artifact detection and removal for single channel EEG// 2015 IEEE International Conference on Electro/Information Technology (EIT). Dekalb: IEEE, 2015: 330-334.
|
29. |
Mahajan R, Morshed B I. Unsupervised eye blink artifact denoising of EEG data with modified multiscale sample entropy, kurtosis, and wavelet-ICA. IEEE J Biomed Health Inform, 2014, 19(1): 158-165.
|
30. |
Khatun S, Mahajan R, Morshed B I. Comparative study of wavelet-based unsupervised ocular artifact removal techniques for single-channel EEG data. IEEE J Transl Eng Health Med, 2016, 4: 1-8.
|
31. |
Malekpour S, Gubner J A, Sethares W A. Measures of generalized magnitude-squared coherence: Differences and similarities. J Frankl Inst-Eng Appl Math, 2018, 355(5): 2932-2950.
|