1. |
Vasiljevic G A M, Miranda L C. Brain–computer interface games based on consumer-grade EEG devices: a systematic literature review. Int J Hum-Comput Int, 2020, 36(2): 105-142.
|
2. |
Chaudhary U, Birbaumer N, Ramos-Murguialday A. Brain–computer interfaces for communication and rehabilitation. Nat Rev Neurol, 2016, 12 (9): 513-525.
|
3. |
Abiri R, Borhani S, Sellers E W, et al. A comprehensive review of EEG-based brain-computer interface paradigms. J Neural Eng, 2019, 16 (1): 011001.
|
4. |
Lotte F, Congedo M, Lécuyer A, et al. A review of classification algorithms for EEG-based brain–computer interfaces. J Neural Eng, 2007, 4(2): R1-R13.
|
5. |
刘锦, 吴小培, 周蚌艳, 等. 单次样本对的CSP滤波器设计及其在脑电训练样本优化中的应用. 信号处理, 2017, 33(7): 993-1001.
|
6. |
Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng, 2000, 8(4): 441-446.
|
7. |
Lotte F, Guan C. Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans Biomed Eng, 2011, 58(2): 355-362.
|
8. |
Song X, Yoon S C. Improving brain-computer interface classification using adaptive common spatial patterns. Comput Biol Med, 2015, 61: 150-160.
|
9. |
Jin J, Miao Y, Daly I, et al. Correlation based channel selection and regularized feature optimization for MI based BCI. Neural Netw, 2019, 118: 262-270.
|
10. |
于沐涵, 陈峰. 基于HCSP和模糊熵的脑电信号分类. 计算机工程与设计, 2018, 39(2): 557-562.
|
11. |
Ang K K, Chin Z Y, Zhang H H, et al. Filter bank common spatial pattern (FBCSP) in brain-computer interface// 2008 IEEE International Joint Conference on Neural Networks (IJCNN), Hong Kong: IEEE, 2008: 2390-2397.
|
12. |
Das R, Lopez P S, Khan M A, et al. FBCSP and adaptive boosting for multiclass motor imagery BCI data classification: a machine learning approach//2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto: IEEE, 2020: 1275-1279.
|
13. |
Zhang S, Zhu Z, Zhang B, et al. The CSP-based new features plus non-convex log sparse feature selection for motor imagery EEG classification. Sensors (Basel). 2020, 20(17): 4749.
|
14. |
Blanco-Diaz C F, Antelis J M, Ruiz-Olaya A F. Comparative analysis of spectral and temporal combinations in CSP-based methods for decoding hand motor imagery tasks. J Neurosci Methods. 2022, 371: 109495.
|
15. |
Pei Y, Luo Z G, Zhao H Y, et al. A tensor-based frequency features combination method for brain–computer interfaces. IEEE Trans Neural Syst Rehabil Eng. 2022, 30: 465-475.
|
16. |
Altuwaijri G A, Muhammad G. A multibranch of convolutional neural network models for electroencephalogram-based motor imagery classification. Biosensors, 2022, 12(1): 22.
|
17. |
Kumar S, Sharma R, Sharma A. OPTICAL+: a frequency-based deep learning scheme for recognizing brain wave signals. Peerj Comput Sci, 2021, 7: e375.
|
18. |
Lotte F, Bougrain L, Cichocki A, et al. A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J Neural Eng, 2018, 15(3): 031005.
|
19. |
Hou Y, Chen T, Lun X, et al. A novel method for classification of multi-class motor imagery tasks based on feature fusion. Neurosci Res, 2022, 176: 40-48.
|
20. |
Rashid M, Sulaiman N, Abdul Majeed A P P, et al. Current status, challenges, and possible solutions of EEG-based brain-computer interface: a comprehensive review. Front Neurorobotics, 2020, 14: 25.
|
21. |
Zhang R, Zong Q, Dou L, et al. A novel hybrid deep learning scheme for four-class motor imagery classification. J Neural Eng, 2019, 16(6): 066004.
|
22. |
Schirrmeister R T, Springenberg J T, Fiederer L D J, et al. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum Brain Mapp, 2017, 38(11): 5391-5420.
|
23. |
Amin S U, Alsulaiman M, Muhammad G, et al. Deep learning for EEG motor imagery classification based on multi-layer CNNs feature fusion. Future Generation Computer Systems, 2019, 101: 542–554.
|
24. |
Lun X, Yu Z, Chen T, et al. A simplified CNN classification method for MI-EEG via the electrode pairs signals. Front Hum neurosci, 2020, 14: 338.
|
25. |
Xu S, Zhu L, Kong W, et al. A novel classification method for EEG-based motor imagery with narrow band spatial filters and deep convolutional neural network. Cogn Neurodyn, 2022, 16(2): 379-389.
|
26. |
Ma X, Wang D, Liu D, et al. DWT and CNN based multi-class motor imagery electroencephalographic signal recognition. J Neural Eng, 2020, 17 (1): 016073.
|
27. |
乔晓艳, 王春晖, 任兆麟. 小波统计方法提取想象运动诱发脑电特征. 测试技术学报, 2013, 27(3): 201-207.
|
28. |
张义, 潘赛虎, 邹凌, 等. 基于OVR-CSP的情绪认知重评脑电信号晚正成分研究. 生物医学工程学杂志, 2014, 31(6): 1212-1217.
|
29. |
曾庆山, 范明莉, 宋庆祥. 基于CSP与卷积神经网络算法的多类运动想象脑电信号分类. 科学技术与工程, 2017, 17(27): 144-149.
|
30. |
Stieger J R, Engel S A, Suma D, et al. Benefits of deep learning classification of continuous noninvasive brain-computer interface control. J Neural Eng, 2021,18(4): 046082.
|
31. |
Ang K K, Chin Z Y, Wang C, et al. Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front Neurosci, 2012, 6: 39.
|
32. |
Luo T J, Zhou C L, Chao F. Exploring spatial-frequency-sequential relationships for motor imagery classification with recurrent neural network. BMC Bioinformatics, 2018, 19(1): 344-362.
|
33. |
Liu C, Jing J, Daly I, et al. SincNet-based hybrid neural network for motor imagery EEG decoding. IEEE Trans Neural Syst Rehabil Eng, 2020, 30: 540-549.
|
34. |
Roy A M. Adaptive transfer learning-based multiscale feature fused deep convolutional neural network for EEG MI multiclassification in brain–computer interface. Eng Appl Artif Intel, 2022, 116: 105347.
|