1. |
Ebrahimi Z, Loni M, Daneshtalab M, et al. A review on deep learning methods for ECG arrhythmia classification. Expert Systems with Applications: X, 2020: 100033.
|
2. |
Anumonwo J B, Kalifa J. Risk factors and genetics of atrial fibrillation. Heart Fail Clin, 2016, 12(2): 157-166.
|
3. |
Chen A, Wang F, Liu W, et al. Multi-information fusion neural networks for arrhythmia automatic detection. Comput Methods Programs Biomed, 2020, 193: 105479.
|
4. |
Zeng Nianyin, Wang Zidong, Zhang Hong. Inferring nonlinear lateral flow immunoassay state-space models via an unscented Kalman filter. Science China Information Sciences, 2016, 59(11): 112204.
|
5. |
Raj S, Ray K C. ECG signal analysis using DCT-based DOST and PSO optimized SVM. IEEE Trans Instrum Meas, 2017, 66(3): 470-478.
|
6. |
Shi H, Wang H, Huang Y, et al. A hierarchical method based on weighted extreme gradient boosting in ECG heartbeat classification. Comput Methods Programs Biomed, 2019, 171: 1-10.
|
7. |
Shyu L Y, Wu Y H, Hu W. Using wavelet transform and fuzzy neural network for VPC detection from the Holter ECG. IEEE Trans Biomed Eng, 2004, 51(7): 1269-1273.
|
8. |
Martis R J, Acharya U R, Min L C. ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed Signal Process Control, 2013, 8(5): 437-448.
|
9. |
Xu S S, Mak M W, Cheung C C. Towards end-to-end ECG classification with raw signal extraction and deep neural networks. IEEE J Biomed Health Inform, 2019, 23(4): 1574-1584.
|
10. |
Kiranyaz S, Ince T, Gabbouj M. Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans Biomed Eng, 2016, 63(3): 664-675.
|
11. |
Rohmantri R, Surantha N. Arrhythmia classification using 2D convolutional neural network. Int. J. Adv. Comput. Sci. Appl, 2020, 11: 201-208.
|
12. |
李端, 张洪欣, 刘知青, 等. 基于深度残差卷积神经网络的心电信号心律不齐识别. 生物医学工程学杂志, 2019, 36(2): 189-198.
|
13. |
王自强, 刘洪运, 石金龙, 等. 基于卷积神经网络的心电图心博识别. 中国医学物理学杂志, 2019, 36(8): 938-944.
|
14. |
Hammad M, Zhang S, Wang K. A novel two-dimensional ECG feature extraction and classification algorithm based on convolution neural network for human authentication. Future Generation Computer Systems, 2019, 101: 180-196.
|
15. |
LeCun Y, Bengio Y. Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks, 1995, 3361(10): 1995.
|
16. |
Moody G B, Mark R G. The impact of the MIT-BIH arrhythmia database. IEEE Engineering in Medicine and Biology Magazine, 2001, 20(3): 45-50.
|
17. |
Pan J, Tompkins W J. A real-time QRS detection algorithm. IEEE Trans Biomed Eng, 1985, 32(3): 230-236.
|
18. |
Li Z, Zhou D, Wan L, et al. Heartbeat classification using deep residual convolutional neural network from 2-lead electrocardiogram. J Electrocardiol, 2020, 58: 105-112.
|
19. |
Han Chuanqi, Yu Fang, Wang Peng, et al. Length no longer matters: a real length adaptive arrhythmia classification model with multi-scale convolution//ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2021: 1295-1299.
|
20. |
Mathunjwa B M, Lin Y T, Lin C H, et al. ECG arrhythmia classification by using a recurrence plot and convolutional neural network. Biomedical Signal Processing and Control, 2021, 64: 102262.
|
21. |
Zeng M, Zhang X, Zhao C, et al. GRP-DNet: a gray recurrence plot-based densely connected convolutional network for classification of epileptiform EEG. Journal of Neuroscience Methods, 2021, 347: 108953.
|
22. |
谢佳玲, 龚渝顺, 魏良, 等. 一种针对可穿戴设备的抗运动干扰心率检测算法. 生物医学工程学杂志, 2021, 38(4): 764-773.
|
23. |
Zhang J, Tian J, Cao Y, et al. Deep time–frequency representation and progressive decision fusion for ECG classification. Knowledge-Based Systems, 2020, 190: 105402.
|
24. |
Creswell A, White T, Dumoulin V, et al. Generative adversarial networks: an overview. IEEE Signal Process Mag, 2018, 35(1): 53-65.
|
25. |
魏国强, 周从华, 张婷. 基于多维分段和动态权重DTW的多元时间序列相似性度量方法. 计算机与数字工程, 2021, 49(11): 2299-2304, 2406.
|
26. |
Wasimuddin M, Elleithy K, Abuzneid A, et al. ECG signal analysis using 2-D image classification with convolutional neural network//2019 International Conference on Computational Science and Computational Intelligence (CSCI), IEEE, 2019: 949-954.
|
27. |
Heravi E J, Aghdam H H, Puig D. An optimized convolutional neural network with bottleneck and spatial pyramid pooling layers for classification of foods. Pattern Recognition Letters, 2018, 105: 50-58.
|
28. |
Acharya U R, Oh S L, Hagiwara Y, et al. A deep convolutional neural network model to classify heartbeats. Computers in biology and medicine, 2017, 89: 389-396.
|
29. |
Oh S L, Ng E Y K, Tan R S, et al. Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Comput Biol Med, 2018, 102: 278-287.
|
30. |
Zhou S, Tan B. Electrocardiogram soft computing using hybrid deep learning CNN-ELM. Applied Soft Computing, 2020, 86: 105778.
|
31. |
Zhu Wenliang, Chen Xiaohe, Wang Yan, et al. Arrhythmia recognition and classification using ECG morphology and segment feature analysis. IEEE/ACM Trans Comput Biol Bioinform, 2019, 16(1): 131-138.
|