1. |
Anxionnat R, Bracard S, Ducrocq X, et al. Intracranial aneurysms: clinical value of 3D digital subtraction angiography in the therapeutic decision and endovascular treatment. Radiology, 2001, 218(3): 799-808.
|
2. |
Sun Z, Choo G H, Ng K H. Coronary CT angiography: current status and continuing challenges. Br J Radiol, 2012, 85(113): 495-510.
|
3. |
Uchino A, Kato A, Takase Y, et al. Middle cerebral artery variations detected by magnetic resonance angiography. Eur Radiol, 2000, 10(4): 560-563.
|
4. |
Maythem A. Development of an electromagnetic induction method for non-invasive blood flow measurement. West Yorkshire: University of Huddersfield, 2016.
|
5. |
Yang D, Liu Y J, Xu B, et al. A blood flow volume linear inversion model based on electromagnetic sensor for predicting the rate of arterial stenosis. Sensors, 2019, 19(13): 3006.
|
6. |
杨静芬. 多电极电磁血液流速仪建模与成像算法研究. 石家庄: 河北科技大学, 2015.
|
7. |
赵民. 基于多电极电磁测量的血液流速仪研究. 石家庄: 河北科技大学, 2017.
|
8. |
章伟睿, 张涛, 史学涛, 等. 基于差分迭代的电阻抗成像算法研究. 电工技术学报, 2021, 36(4): 747-755.
|
9. |
Yang D, Liu J H, Wang Y C, et al. Application of a generative adversarial network in image reconstruction of magnetic induction tomography. Sensors, 2021, 21(11): 3869.
|
10. |
田文旭, 杨丹, 魏竹林, 等. 基于改进栈式自编码器的扩散光学层析成像逆问题求解方法研究. 生物医学工程学杂志, 2021, 38(4): 774-782.
|
11. |
Wang J, Han B. Application of a class of iterative algorithms and their accelerations to Jacobian-based linearized EIT image reconstruction. Inverse Probl Sci Eng, 2021, 29(8): 1108-1126.
|
12. |
Wei H Y, Soleimani M. Four dimensional reconstruction using magnetic induction tomography: experimental study. Electromagn Waves (Camb), 2012, 129: 17-32.
|
13. |
Yang K Y, Borijindargoon N, Ng B P, et al. Learning sparsifying transforms for image reconstruction in electrical impedance tomography//ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto: IEEE, 2021: 1405-1409.
|
14. |
Liu Y J, Yang D, Duo Y H, et al. Numerical model and finite element simulation of arterial blood flow profile Reconstruction in a uniform magnetic field. J Phys D, 2020, 53(19): 195402.
|
15. |
Li Feng, Tan Chao, Dong Feng, et al. V-net deep imaging method for electrical resistance tomography. IEEE Sens J, 2020, 20(12): 6460-6469.
|
16. |
叶明, 李晓丞, 刘凯, 等. 一种基于U2-Net模型的电阻抗成像方法. 仪器仪表学报, 2021, 42(2): 235-243.
|
17. |
Ren Shangjie, Sun Kai, Tan Chao, et al. A two-stage deep learning method for robust shape reconstruction with electrical impedance tomography. IEEE Trans Instrum Meas, 2020, 69(7): 4887-4897.
|
18. |
Tan Chao, Lv Shuhua, Dong Feng, et al. Image reconstruction based on convolutional neural network for electrical resistance tomography. IEEE Sens J, 2019, 19(1): 196-204.
|
19. |
Wei Z, Liu D, Chen X D. Dominant-current deep learning scheme for electrical impedance tomography. IEEE Trans Biomed Eng, 2019, 66(9): 2546-2555.
|
20. |
姚健. 多电极电磁肢体血液流速仿真与流速公布重建研究. 石家庄: 河北科技大学, 2020.
|
21. |
Galili I, Kaplan D, Lehavi Y. Teaching faraday's law of electromagnetic induction in an introductory physics course. Am J Phys, 2006, 74(4): 337-343.
|
22. |
Chen S, Chew W C. Discrete electromagnetic theory with exterior calculus//2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai: IEEE, 2016: 896-897.
|
23. |
Guo Liang, Liu Guoqiang, Xia Hui. Magneto-acousto-electrical tomography with magnetic induction for conductivity reconstruction. IEEE Trans Biomed Eng, 2015, 62(9): 2114-2124.
|
24. |
徐文臻, 沈悦, 冯坚强, 等. 一种用于多电极电磁流量计的速度重构设计. 测控技术, 2021, 40(6): 57-60.
|
25. |
濮玉, 朱俊江, 张德涛, 等. 基于改进卷积神经网络的房颤筛查算法. 生物医学工程学杂志, 2021, 38(4): 686-694.
|
26. |
续宝红, 丁冲, 徐桂芝. 卷积神经网络在阿尔茨海默病诊断中的应用研究. 生物医学工程学杂志, 2021, 38(1): 169-177, 184.
|
27. |
Gu J X, Wang Z H, Kuen J, et al. Recent advances in convolutional neural networks. Pattern Recognit, 2018, 77: 354-377.
|
28. |
Lecun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition. Neural Comput, 1989, 1(4): 541-551.
|
29. |
Italian national research council institute for applied physics/ Andreuccetti D, Fossi R, Petrucci C, et al. An internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz. (1997) [2021-12-31]. http: // niremf.ifac.cnr.it/tissprop/.
|