1. |
黄治虎, 陈宝安, 欧阳建, 等. 我国白血病流行病学调查的现状和对策. 临床血液学杂志, 2009, 22(2): 166-167.
|
2. |
Musto P, Statuto T, Valvano L, et al. An update on biology, diagnosis and treatment of primary plasma cell leukemia. Expert Rev Hematol, 2019, 12(4): 245-253.
|
3. |
伍柏青, 傅新文. 当代五分类血细胞分析仪技术原理分析. 实验与检验医学, 2011, 29(4): 391-394.
|
4. |
Bennett J M, Catovsky D, Daniel M T, et al. Proposals for the classification of the acute leukaemias French-American-British (FAB) co-operative group. Brit J Haematol, 1976, 33(4): 451-458.
|
5. |
Shen D, Wu G, Suk H I. Deep learning in medical image analysis. Annu Rev Biomed Eng, 2017, 19: 221-248.
|
6. |
Litjens G, Kooi T, Bejnordi B E, et al. A survey on deep learning in medical image analysis. Med Image Anal, 2017, 42: 60-88.
|
7. |
Dhieb N, Ghazzai H, Besbes H, et al. An automated blood cells counting and classification framework using mask R-CNN deep learning model// 2019 31st International Conference on Microelectronics (ICM). Cairo: IEEE, 2019: 300-303.
|
8. |
Tobias R R, De Jesus L C, Mital M E, et al. Faster R-CNN model with momentum optimizer for RBC and WBC variants classification// 2020 IEEE 2nd Global Conference on Life Sciences and Technologies (LifeTech). Kyoto: IEEE, 2020: 235-239.
|
9. |
Shakarami A, Menhaj M B, Mahdavi-Hormat A, et al. A fast and yet efficient YOLOv3 for blood cell detection. Biomed Signal Proces, 2021, 66: 102495.
|
10. |
鞠孟汐, 李欣蔚, 李章勇. 基于深度主动学习的白带白细胞智能检测方法研究. 生物医学工程学杂志, 2020, 37(3): 519-526.
|
11. |
Xia T, Jiang R, Fu Y Q, et al. Automated blood cell detection and counting via deep learning for microfluidic point-of-care medical devices. IOP Conf Ser Mater Sci Eng, 2019, 646: 012048.
|
12. |
Novoselnik F, Grbić R, Galić I, et al. Automatic white blood cell detection and identification using convolutional neural network// 2018 International Conference on Smart Systems and Technologies (SST). Osijek: IEEE, 2018: 163-167.
|
13. |
Matek C, Schwarz S, Spiekermann K, et al. Human-level recognition of blast cells in acute myeloid leukaemia with convolutional neural networks. Nat Mach Intell, 2019, 1(11): 538-544.
|
14. |
Fu X, Fu M, Li Q, et al. Morphogo: an automatic bone marrow cell classification system on digital images analyzed by artificial intelligence. Acta Cytol, 2020, 64(6): 588-596.
|
15. |
Huang P, Wang J, Zhang J, et al. Attention-aware residual network based manifold learning for white blood cells classification. IEEE J Biomed Health Inform, 2020, 25(4): 1206-1214.
|
16. |
Mori J, Kaji S, Kawai H, et al. Assessment of dysplasia in bone marrow smear with convolutional neural network. Sci Rep, 2020, 10(1): 1-8.
|
17. |
Ghosh M, Das D, Mandal S, et al. Statistical pattern analysis of white blood cell nuclei morphometry// 2010 IEEE Students Technology Symposium (TechSym). Kharagpur: IEEE, 2010: 59-66.
|
18. |
Rezatofighi S H, Soltanian-Zadeh H. Automatic recognition of five types of white blood cells in peripheral blood. Comput Med Imaging Graph, 2011, 35(4): 333-343.
|
19. |
Zhu Q, Lu D, Zhang T, et al. Fine-grained classification of neutrophils with hybrid loss// International Conference on Image and Graphics. Haikou: Springer, 2021: 102-113.
|
20. |
Zhou Z, Siddiquee M M R, Tajbakhsh N, et al. Unet++: A nested U-Net architecture for medical image segmentation. Deep Learn Med Image Anal Multimodal Learn Clin Decis Support, 2018, 11045: 3-11.
|
21. |
Lu Y, Qin X, Fan H, et al. WBC-Net: A white blood cell segmentation network based on UNet++ and ResNet. Appl Soft Comput, 2021, 101: 107006.
|
22. |
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation// International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015: 234-241.
|
23. |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An Image is Worth 16x16 Words: Transformers for image recognition at scale// International Conference on Learning Representations. New Orleans: ICLR, 2021: 1-22.
|
24. |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need// Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17). California: Curran Associates Inc, 2017: 6000-6010.
|
25. |
Hadsell R, Chopra S, LeCun Y. Dimensionality reduction by learning an invariant mapping// 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06). New York: IEEE, 2006, 2: 1735-1742.
|
26. |
Matek C, Schwarz S, Marr C, et al. A single-cell morphological dataset of leukocytes from AML patients and non-malignant controls [2022-03-05]. https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=61080958.
|
27. |
Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell, 2016, 39(6): 1137-1149.
|
28. |
Settles B. Active learning literature survey. Madison: University of Wisconsin-Madison, 2010.
|
29. |
Van Dyk D A, Meng X L. The art of data augmentation. J Comput Graph Stat, 2001, 10(1): 1-50.
|
30. |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition// 3rd International Conference on Learning Representations (ICLR 2015). San Diego: ICLR, 2015: 1-14.
|
31. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
32. |
Hu J, Shen L, Albanie S, et al. Squeeze-and-excitation networks. IEEE Trans Pattern Anal Mach Intell, 2020, 42(8): 2011-2023.
|
33. |
Xie S, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE 2017: 1492-1500.
|
34. |
Tan M, Le Q. Efficientnet: Rethinking model scaling for convolutional neural networks// International Conference on Machine Learning. California: IMLS, 2019: 6105-6114.
|
35. |
van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res, 2008, 9(86): 2579-2605.
|